Background: Monitoring left ventricular preload is critical to achieve adequate fluid resuscitation in patients with hypotension and sepsis. This prospective study tested the correlation of the pulmonary artery occlusion pressure, the left ventricular end-diastolic area index measured by transesophageal echocardiography, the arterial systolic pressure variation (the difference between maximal and minimal systolic blood pressure values during one mechanical breath), and its delta down (dDown) component (= apneic - minimum systolic blood pressure) with the response of cardiac output to volume expansion during sepsis.

Methods: Preload parameters were measured at baseline and during graded volume expansion (increments of 500 ml) in 15 patients with sepsis-induced hypotension who required mechanical ventilation. Each volume-loading step (VLS) was classified as a responder (increase in stroke volume index > or = 15%) or a nonresponder. Successive VLSs were performed until a nonresponder VLS was obtained.

Results: Thirty-five VLSs (21 responders) were performed. Fluid loading caused an overall significant increase in pulmonary artery occlusion pressure and end-diastolic area index, and a significant decrease in systolic pressure variation and delta down (P < 0.01). There was a significant difference between responder and nonresponder VLSs in end-diastolic area index, systolic pressure variation, and dDown, but not in pulmonary artery occlusion pressure. Receiver-operator curve analysis showed that dDown was a more accurate indicator of the response of stroke volume index to volume loading than end-diastolic area index and pulmonary artery occlusion pressure. A dDown component of more than 5 mmHg indicated that the stroke volume index would increase in response to a subsequent fluid challenge (positive and negative predictive values: 95% and 93%, respectively).

Conclusion: The dDown component of the systolic pressure variation is a sensitive indicator of the response of cardiac output to volume infusion in patient with sepsis-induced hypotension who require mechanical ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-199812000-00007DOI Listing

Publication Analysis

Top Keywords

systolic pressure
20
pressure variation
20
pulmonary artery
16
artery occlusion
16
occlusion pressure
16
end-diastolic area
16
sepsis-induced hypotension
12
ddown component
12
stroke volume
12
pressure
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!