Background: The relative contribution of the various hemodynamic and metabolic mechanisms leading to endothelial dysfunction may be different in specific vascular diseases. Since shear stress is one of the main mechanical stimuli of endothelial cells, the aim of this study was to investigate its contribution to endothelial dysfunction in two distinct vascular diseases, hypertension and type II diabetes.
Subjects And Methods: We measured the radial artery diameter at baseline, after ischemic vasodilation and after nitroglycerin vasodilation in 16 untreated patients with high blood pressure, in 15 type II normotensive diabetic patients and in 17 healthy controls. Wall shear stress was evaluated by simultaneous measurements of whole blood viscosity and blood flow velocity.
Results: In diabetic patients, whole blood viscosity was significantly higher whereas wall shear stress was similar compared to controls. In hypertensive patients, whole blood viscosity was higher and wall shear stress was lower than in controls. Endothelium-dependent vasodilation was impaired in both hypertensive and diabetic patients (P < 0.01) after adjustment for age, sex, body mass index and postnitroglycerin vasodilation. When adjustments were made for maximal systolic shear stress, endothelium-dependent vasodilation remained lower in the diabetic patients (P < 0.01), but not in those with high blood pressure compared to controls.
Conclusions: In hypertension, endothelium-dependent vasodilation is mainly due to a chronic decrease in shear stress (the most important physiological stimulus of the endothelial cells) with no major intrinsic endothelial cell dysfunction. In contrast, in diabetics, the lower endothelium-dependent vasodilation was not the result of an altered shear stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00004872-199816110-00008 | DOI Listing |
J Mech Phys Solids
March 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA.
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis.
View Article and Find Full Text PDFNitric Oxide
December 2024
Key Laboratory for Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:
Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Intraluminal prosthetic graft thrombus (IPT) has been described in case of endovascular aortic pathology repair. This study aimed to assess hemodynamic indicators associated with various anatomical morphologies following endovascular aortic repair (EVAR), aiming to offer further references for the choice of clinical therapy. Six model models (normal, iliac compression, aortic compression, aortoiliac compression, iliac distortion, and long-leg stent) were established based on common anatomical morphologies following EVAR.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architectures, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China.
The impact of rock bolts on the mechanical behavior of nonpersistent joints, including the intricate interactions between the joints, rock bridges, and rock bolts, has received limited investigation despite their effectiveness in reinforcing rock mass discontinuities. In order to tackle this issue, a variety of normal stresses were applied during direct shear tests conducted on artificial rock-like specimens with nonpersistent joints, both bolted and unbolted. Meanwhile, to measure the deformation in the rock bridge and joint plane region, a set of strain gauges were implemented.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China.
In this study, we aimed to assess the effects of enhanced external counterpulsation (EECP) and individual shear rate therapy (ISRT) on peripheral artery function in patients with lower extremity atherosclerotic disease (LEAD). We randomly assigned 45 LEAD patients to receive 35 sessions of 45 min of EECP (n = 15), ISRT (n = 15), or sham-control (n = 15). Flow-mediated dilation in the brachial artery (brachial-FMD); 6-min walk distance; blood flow in the popliteal, posterior tibial, anterior tibial, and dorsalis pedis arteries; and plasma levels were measured before and after the 7 weeks treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!