MCM proteins are molecular components of the DNA replication licensing system in Xenopus. These proteins comprise a conserved family made up of six distinct members which have been found to associate in large protein complexes. We have used a combination of biochemical and cytological methods to study the association of soluble and chromatin-bound Xenopus MCM proteins during the cell cycle. In interphase, soluble MCM proteins are found organized in a core salt-resistant subcomplex that includes MCM subunits which are known to have high affinity for histones. The interphasic complex is modified at mitosis and the subunit composition of the resulting mitotic subcomplexes is distinct, indicating that the stability of the MCM complex is under cell cycle control. Moreover, we provide evidence that the binding of MCM proteins to chromatin may occur in sequential steps involving the loading of distinct MCM subunits. Comparative analysis of the chromatin distribution of MCM2, 3, and 4 shows that the binding of MCM4 is distinct from that of MCM2 and 3. Altogether, these data suggest that licensing of chromatin by MCMs occurs in an ordered fashion involving discrete subcomplexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.1998.4271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!