Rationale And Objectives: Ultrasound can cause destruction of microbubble contrast agents used to enhance medical ultrasound imaging. This study sought to characterize the dynamics of this interaction by direct visual observation of microbubbles during insonification in vitro by a medical ultrasound imaging system.

Methods: Video microscopy was used to observe air-filled sonicated albumin microspheres adsorbed to a solid support during insonation.

Results: Deflation was not observed at lowest transmit power settings. At higher intensities, gas left the microparticle gradually, apparently dissolving into the surrounding medium. Deflation was slower for higher microsphere surface densities. Intermittent ultrasound imaging (0.5 Hz refresh rate) caused slower deflation than continuous imaging (33 Hz).

Conclusions: Higher concentrations of microbubbles, lower ultrasound transmit power settings, and intermittent imaging each can reduce the rate of destruction of microspheres resulting from medical ultrasound insonation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004424-199812000-00004DOI Listing

Publication Analysis

Top Keywords

medical ultrasound
16
ultrasound imaging
12
ultrasound
8
transmit power
8
power settings
8
imaging
5
direct video-microscopic
4
video-microscopic observation
4
observation dynamic
4
dynamic effects
4

Similar Publications

Objective: This study explores a hybrid approach to maternal-fetal care for gestational diabetes (GD), integrating virtual visits seamlessly with in-clinic assessments. We assessed the feasibility, time efficiency, patient satisfaction, and clinical outcomes to facilitate wider adoption of maternal-fetal telemedicine.

Methods: We conducted a 4-week prospective study involving 20 women with GD at ≥32 weeks of pregnancy, alternating between remote and in-clinic weekly visits.

View Article and Find Full Text PDF

A Multi-Scale Computational Model of the Hepatic Circulation Applied to Predict the Portal Pressure After Transjugular Intrahepatic Portosystemic Shunt (TIPS).

Int J Numer Method Biomed Eng

January 2025

Hebei Provincial Key Laboratory of Portal Hypertension and Cirrhosis, Xingtai People's Hospital, Xingtai, China; Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.

Transjugular intrahepatic portosystemic shunt (TIPS) is a widely used surgery for portal hypertension. In clinical practice, the diameter of the stent forming a shunt is usually selected empirically, which will influence the postoperative portal pressure. Clinical studies found that inappropriate portal pressure after TIPS is responsible for poor prognosis; however, there is no scheme to predict postoperative portal pressure.

View Article and Find Full Text PDF

Coronary microvascular dysfunction (CMD) refers to clinical symptoms caused by structural and functional damage to coronary microcirculation. The timely and precise diagnosis of CMD-related myocardial ischemia is essential for improving patient prognosis. This study describes a method for the multimodal (fluorescence, ultrasonic, and photoacoustic) noninvasive imaging and treatment of CMD based on ischemic myocardium-targeting peptide (IMTP)-guided nanobubbles functionalized with indocyanine green (IMTP/ICG NBs) and characterizes their basic characteristics and in vitro imaging and targeting abilities.

View Article and Find Full Text PDF

Intracranial pressure (ICP) monitoring is a cornerstone of neurocritical care in managing severe brain injury. However, current invasive ICP monitoring methods carry significant risks, including infection and intracranial hemorrhage, and are contraindicated in certain clinical situations. Additionally, these methods are not universally available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!