Respiratory activity and growth of human skin derma fibroblasts.

Ital J Biochem

Institute of Medical Biochemistry and Chemistry, University of Bari.

Published: September 1998

A study has been made on the speed of growth and respiratory activity of fibroblast cultures from control derma, cheloid (hypertrophic) scar and stabilized scar taken from human skin. The speed of growth and the efficiency of plaque formation of fibroblasts from cheloid scar were greater in comparison with those of fibroblasts from stabilized scar and were stimulated by the addition to the culture medium of the exudate from post-traumatic ulcer. Measurement of the contents of cytochromes showed a decrease in the content of cytochromes b562 and c + c1 in the fibroblast culture from both cheloid and stabilized scar as compared to the fibroblast culture from control derma. Cytochrome aa3 content did not show significant difference among the three types of fibroblast cultures. The respiratory activities supported by pyruvate plus malate, succinate or ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine did not show, however, significant difference among the three fibroblast cultures. These observations show that the speed of growth of skin fibroblasts does not depend on the overall respiratory capacity. The exudate stimulated the activity of cytochrome c oxidase in fibroblasts from control derma, and cheloid scar. This effect and the accompanying stimulation of fibroblast growth might be correlated with the balance of oxygen free radicals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

speed growth
12
fibroblast cultures
12
control derma
12
stabilized scar
12
respiratory activity
8
human skin
8
derma cheloid
8
cheloid scar
8
fibroblast culture
8
difference three
8

Similar Publications

Beet crops are highly vulnerable to pest infestations throughout their growth cycle, which significantly affects crop development and yield. Timely and accurate pest identification is crucial for implementing effective control measures. Current pest detection tasks face two primary challenges: first, pests frequently blend into their environment due to similar colors, making it difficult to capture distinguishing features in the field; second, pest images exhibit scale variations under different viewing angles, lighting conditions, and distances, which complicates the detection process.

View Article and Find Full Text PDF

strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.

View Article and Find Full Text PDF

DNA Damage Response Mutants Challenged with Genotoxic Agents-A Different Experimental Approach to Investigate the and Genes.

Genes (Basel)

January 2025

Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.

DNA damage response (DDR) is a highly conserved and complex signal transduction network required for preserving genome integrity. DNA repair pathways downstream of DDR include the tyrosyl-DNA phosphodiesterase1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine residue of topoisomerase I (TopI) and 3'-phosphate end of DNA. A small TDP1 subfamily, composed of TDP1α and TDP1β, is present in plants.

View Article and Find Full Text PDF

Metabolomic Insights into the Allelopathic Effects of (Mill.) Swingle Volatile Organic Compounds on the Germination Process of (L.).

Metabolites

January 2025

Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy.

This study explores the allelopathic effects of volatile organic compounds (VOCs) emitted by the invasive species (Mill.) Swingle on the seed germination of . is known for releasing allelopathic VOCs that suppress the growth of neighbouring plants, contributing to its invasive potential.

View Article and Find Full Text PDF

Growth Propagation of Liquid Spawn on Non-Woven Hemp Mats to Inform Digital Biofabrication of Mycelium-Based Composites.

Biomimetics (Basel)

January 2025

Research Group Architectural Engineering, Department of Architecture, KU Leuven, 3001 Leuven, Belgium.

Mycelium-based composites (MBCs) are highly valued for their ability to transform low-value organic materials into sustainable building materials, offering significant potential for decarbonizing the construction sector. The properties of MBCs are influenced by factors such as the mycelium species, substrate materials, fabrication growth parameters, and post-processing. Traditional fabrication methods involve combining grain spawn with loose substrates in a mold to achieve specific single functional properties, such as strength, acoustic absorption, or thermal insulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!