Androgen-independent metastatic prostate cancer is characterized by a heterogeneous loss of androgen receptor (AR) expression among tumor cells. In this study, we evaluate DNA hypermethylation as a potential transcriptional regulatory mechanism in AR-negative prostate cancer cell lines. Nucleotide sequence analysis demonstrates an approximately 15-kb CpG island in the AR gene that encompasses the transcription start site and exon 1. Using Southern blotting with methylation-sensitive restriction enzymes and methylation-specific PCR, we find aberrant methylation in the AR expression-negative cell lines Du145, DuPro, TSU-PR1, and PPC1. Incomplete methylation in the AR CpG island is also seen in normal female breast and ovarian tissues consistent with the inactivation of one X chromosome by hypermethylation. In contrast, prostate cancer cell lines LNCaP and PC3 express AR and are unmethylated. Normal prostate epithelial cell strains demonstrate no methylation. Exposure of AR-negative prostate cancer cell lines to 5-aza-2' deoxycytidine, a demethylating agent, induces the reexpression of AR RNA in DuPro and TSU-PR1. This reexpression is associated with a demethylation of this region. Prostate-specific antigen, an androgen-responsive gene, is also specifically induced in these lines after AR reexpression. Therefore, in vitro DNA methylation of the 5' CpG AR island may be associated with the loss of AR expression. Furthermore, our results demonstrate that treatment with demethylating agents may engender the reexpression and function of the androgen receptor in AR-negative cell lines.
Download full-text PDF |
Source |
---|
J Clin Oncol
January 2025
Fred Saad, MD, University of Montreal, Montreal, QC, Canada; Egils Vjaters, MD, P. Stradinš Clinical University Hospital, Riga, Latvia; Isabella Testa, MD, Bayer S.p.A, Milan, Italy; and Kunhi Parambath Haresh, MD, All India Institute of Medical Sciences, New Delhi, India.
J Clin Oncol
January 2025
Abhenil Mittal, MD, DM, MBBS and Geordie Linford, MD, MSc, BSc, Department of Oncology, Northeast Cancer Center, Health Sciences North, Sudbury, ON, Canada, Division of Clinical Sciences, Northern Ontario School of Medicine, ON, Canada; and Bishal Gyawali, MD, PhD, FASCO, Department of Oncology, Queen's University, Kingston, ON, Canada, Department of Public Health Sciences, Queen's University, Kingston, ON, Canada, Division of Cancer Care and Epidemiology, Queen's University, Kingston, ON, Canada.
PLoS One
January 2025
UVSQ, Inserm, Gustave Roussy, CESP, Université Paris-Saclay, Villejuif, France.
Background: Prostate cancer remains the most frequent cancer among men, representing a significant health burden. Despite its high morbidity and mortality rates, the etiology of prostate cancer remains relatively unknown, with only non-modifiable established risk factors. Chronic inflammation has emerged as a potential factor in prostate carcinogenesis.
View Article and Find Full Text PDFJ Med Chem
January 2025
Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
Precise surgical resection of prostate cancer (PCa) is a significant clinical challenge due to the impact of positive surgical margins on postoperative outcomes. Fluorescence-guided surgery (FGS) enables real-time tumor visualization using fluorescent probes. In this study, we synthesized and evaluated an indocyanine green (ICG)-based PSMA-targeted near-infrared probe, , for intraoperative imaging of PCa lesions.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
January 2025
Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
Prostate cancer is the second most common cancer in men, accounting for 14.1% of new cancer cases in 2020. The aggressiveness of prostate cancer is highly variable, depending on its grade and stage at the time of diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!