The MMAC/PTEN tumor suppressor gene encodes for a phosphatase that recently has been shown to have phosphotidylinositol phosphatase activity, implicating its possible involvement in phosphatidylinositol 3'-kinase-mediated signaling. To investigate possible alterations in growth factor-mediated signal transduction, an adenovirus containing MMAC/PTEN, Ad-MMAC, previously shown to inhibit growth and tumorigenicity in glioma cells, was used to acutely express the transgene. Human glioma cells infected with Ad-MMAC but not with control adenoviruses exhibited an inhibition of phosphorylation of both activating residues of Akt, Ser-473, and Thr-308, along with Akt's serine/threonine kinase activity, without significantly altering Akt expression. The effects of functional MMAC/PTEN expression were relatively specific, because members of several other growth factor-mediated signaling pathways showed no altered responses. The presence of MMAC/PTEN also inhibited phosphorylation of BAD, although no evidence of apoptosis in the in situ treated cells was observed. However, U251 glioma cells infected with Ad-MMAC were induced to undergo anoikis at a significantly higher rate than U251 cels treated with control viruses or mock infected with media. These results demonstrate that the acute administration of MMAC/PTEN results in the inhibition of Akt-mediated signaling, growth inhibition, and anoikis, implying that loss of MMAC/PTEN increases cellular proliferation and significantly augments a cell's survival potential during cellular processes that are associated with malignancy.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!