1. The in vitro human liver metabolism of the alpha1-adrenoceptor blocker tamsulosin was investigated. When 14C-tamsulosin was incubated with human liver microsomes, it was converted to five known urinary metabolites and at least three unknown metabolites. Of the former group, the predominant metabolite was the O-deethylated metabolite (M-1), followed by the o-ethoxyphenoxy acetic acid (AM-1) and the m-hydroxylated metabolite (M-3). 2. There was a good linear relationship between AM-1 formation and testosterone 6beta-hydroxylase activity in microsomes from each of 10 individual donors. The rate of M-1 formation also correlated with the same activity, albeit the correlation curve did not pass through the origin. By contrast, the rates of M-3 and the O-demethylated metabolite (M-4) formation correlated with dextromethorphan O-demethylase activity. 3. Ketoconazole strongly inhibited AM-1 formation and reduced that of M-1 by c. 60%. Immunoinhibition studies using anti-rat antibodies supported these results. The formation of M-3 and M-4 was inhibited by quinidine and sparteine. 4. It is concluded that formation of tamsulosin metabolites, AM-1 and M-1, is catalysed by CYP3A4 whereas that of M-3 and M-4 is catalysed by CYP2D6. However, minor contributions from other CYPs cannot be excluded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/004982598238985 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.
Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.
Updates Surg
January 2025
Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1, Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
Adult left lobe living donor liver transplantation has long been practiced nearly exclusively in Japan. To overcome the potential risks of small-for-size syndrome and hepatic venous outflow obstruction associated with the use of left lobe grafts, center-specific countermeasures such as splenectomy, meticulous hepatic venous reconstruction, and inclusion of the caudate lobe have been implemented, resulting in short- and long-term results comparable with those of right lobe graft in high-volume centers. A recent systematic review and meta-analysis confirmed these observations; however, the indications and techniques of adult left lobe living donor liver transplantation have yet to be standardized.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
January 2025
Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
Background: 4-(4-Cyanophenyl)-2-(2-cyclopentylidenehydrazinyl)thiazole (remodelin) is a potent N-acetyltransferase 10 (NAT10) inhibitor. This compound inhibits tumors and weakens tumor resistance to antitumor drugs. Moreover, remodelin has been found to enhance healthspan in an animal model of the human accelerated ageing syndrome.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!