We have recently established that local exposure to a 929.2 MHz electromagnetic near-field, used for cellular phones, does not promote rat liver carcinogenesis in a medium-term bioassay system. In the present study, a 1.439 GHz electromagnetic near-field (EMF), another microwave band employed for cellular phones in Japan, was similarly investigated. Time division multiple access (TDMA) signals for the Personal Digital Cellular (PDC) Japanese cellular telephone standard system were directed to rats through a quarter-wavelength monopole antenna. Numerical dosimetry showed that the peak SARs within the liver were 1.91-0.937 W/kg, while the whole-body average specific absorption rates (SARs) were 0.680-0.453 W/kg, when the time-averaged antenna radiation power was 0.33 W. Exposure was for 90 min a day, 5 days a week, over 6 weeks, to male F344 rats given a single dose of diethylnitrosamine (200 mg/kg, i.p.) 2 weeks previously. At week 3, all rats were subjected to a two-thirds partial hepatectomy. At week 8, the experiment was terminated and the animals were killed. Carcinogenic potential was scored by comparing the numbers and areas of the induced glutathione S-transferase placental form (GST-P)-positive foci in the livers of exposed (48) and sham-exposed rats (48). Despite increased serum levels of corticosterone, adrenocorticotropic hormone (ACTH) and melatonin, the numbers and the areas of GST-P-positive foci were not significantly altered by the exposure. These findings clearly indicated that local body exposure to a 1.439 GHz EMF, as in the case of a 929.2 MHz field, has no promoting effect on rat liver carcinogenesis in the present model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5921700 | PMC |
http://dx.doi.org/10.1111/j.1349-7006.1998.tb00487.x | DOI Listing |
Adv Mater
January 2025
National Key Laboratory of Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
As one of the typical applications of metamaterials, the invisibility cloak has raised vast research interests. After many years' research efforts, the invisibility cloak has extended its applicability from optics and acoustics to electrostatics and thermal diffusion. One scientific challenge that has significantly restricted the practical application of the invisibility cloak is the strong background dependence, that is, all passive cloaking devices realized thus far are unable to resist variation in the background refractive index.
View Article and Find Full Text PDFNano Lett
January 2025
Regensburg Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany.
Detecting electromagnetic radiation scattered from a tip-sample junction has enabled overcoming the diffraction limit and started the flourishing field of polariton nanoimaging. However, most techniques only resolve amplitude and relative phase of the scattered radiation. Here, we utilize field-resolved detection of ultrashort scattered pulses to map the dynamics of surface polaritons in both space and time.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFAdv Mater
December 2024
Advanced Microscopy and Instrumentation Research Center, Harbin Institute of Technology, Harbin, 150080, P. R. China.
Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).
View Article and Find Full Text PDFNanophotonics
April 2024
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.
With rapid development of holography, metasurface-based holographic communication scheme shows great potential in development of adaptive electromagnetic function. However, conventional passive metasurfaces are severely limited by poor reconfigurability, which makes it difficult to achieve wavefront manipulations in real time. Here, we propose a holographic communication strategy that on-demand target information is firstly acquired and encoded via a depth camera integrated with modified YOLOv5s target detection algorithm, then transmitted by software defined radio modules with long term evolution at 5 GHz, and finally reproduced in the form of holographic images by spin-decoupled programmable coding metasurfaces at 12 GHz after decoding through modified Gerchberg-Saxton algorithm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!