Individuals with properdin, C3 or late complement component deficiency (LCCD) frequently develop meningococcal disease. Vaccination of these persons has been recommended, although reports on efficacy are scarce and not conclusive. We immunized 53 complement-deficient persons, of whom 19 had properdin deficiency, seven a C3 deficiency syndrome and 27 had LCCD with the tetravalent (ACYW) meningococcal capsular polysaccharide vaccine. Serological studies were performed in 43 of them. As controls 25 non-complement-deficient relatives of the complement-deficient vaccinees and 21 healthy non-related controls were vaccinated. Post-vaccination, complement-deficient individuals and controls developed a significant immunoglobulin-specific antibody response to capsular polysaccharides group A, C, Y, W135, but a great individual variation was noticed. Also, the proportion of vaccinees of the various vaccinated groups with a significant increase in bactericidal titre (assayed with heterologous complement) was similar. Opsonization of meningococci A and W135 with sera of the 20 LCCD individuals yielded in 11 (55%) and eight (40%) sera a significant increase of phagocytic activity after vaccination, respectively. Despite vaccination, four complement-deficient patients experienced six episodes of meningococcal disease in the 6 years post-vaccination. Four episodes were due to serogroup B, not included in the vaccine. Despite good response to serogroup Y upon vaccination, disease due to serogroup Y occurred in two C8beta-deficient patients, 3.5 and 5 years post-vaccination. These results support the recommendation to vaccinate complement-deficient individuals and to revaccinate them every 3 years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905137PMC
http://dx.doi.org/10.1046/j.1365-2249.1998.00738.xDOI Listing

Publication Analysis

Top Keywords

complement-deficient individuals
12
meningococcal capsular
8
capsular polysaccharide
8
polysaccharide vaccine
8
meningococcal disease
8
years post-vaccination
8
complement-deficient
6
individuals
5
protection meningococcal
4
serogroup
4

Similar Publications

Complement in breast milk modifies offspring gut microbiota to promote infant health.

Cell

February 2024

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA. Electronic address:

Breastfeeding offers demonstrable benefits to newborns and infants by providing nourishment and immune protection and by shaping the gut commensal microbiota. Although it has been appreciated for decades that breast milk contains complement components, the physiological relevance of complement in breast milk remains undefined. Here, we demonstrate that weanling mice fostered by complement-deficient dams rapidly succumb when exposed to murine pathogen Citrobacter rodentium (CR), whereas pups fostered on complement-containing milk from wild-type dams can tolerate CR challenge.

View Article and Find Full Text PDF

Complement deficient patients are susceptible to rare meningococcal serogroups. A 6-year-old girl presented with serogroup Z meningitis. This led to identification of a C8 deficiency.

View Article and Find Full Text PDF

Objectives: Complement deficiencies are difficult to diagnose because of the variability of symptoms and the complexity of the diagnostic process. Here, we applied a novel 'complementomics' approach to study the impact of various complement deficiencies on circulating complement levels.

Methods: Using a quantitative multiplex mass spectrometry assay, we analysed 44 peptides to profile 34 complement proteins simultaneously in 40 healthy controls and 83 individuals with a diagnosed deficiency or a potential pathogenic variant in 14 different complement proteins.

View Article and Find Full Text PDF

Bacterial infections in a pediatric cohort of primary and acquired complement deficiencies.

Pediatr Rheumatol Online J

September 2020

Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA.

Background: Acquired complement deficiency can occur in the setting of autoimmune syndromes, such as systemic lupus erythematosus (SLE), with very low or, occasionally, undetectable C3 levels. Based on inherited complement defects, patients with transiently low complement may be at similar risk for serious bacterial infection, but the degree of risk related to C3 level and temporal association is unknown.

Methods: We performed a retrospective study including pediatric patients with undetectable total complement activity or absent individual complement components measured at our institution from 2002 to 2018.

View Article and Find Full Text PDF

Antibody-mediated rejection (AbMR) adversely affects long-term graft survival in kidney transplantation. Currently, the diagnosis of AbMR requires a kidney biopsy, and detection of complement C4d deposition in the allograft is one of the diagnostic criteria. Complement activation also generates several soluble fragments which could potentially provide non-invasive biomarkers of the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!