A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physiological disposal of the potential alkali load in diet of the rat: steps to achieve acid-base balance. | LitMetric

The purpose of this study was to provide a better understanding of the physiological role of endogenous net organic acid production in rats consuming their usual diet. Balance studies were performed over 24 h, and urine was collected in the day and night portions of the diurnal cycle. A supplemented low-electrolyte diet(LED) was fed to determine whether urinary organic anions were identical to those in the diet. A titration procedure was developed to determine the pK of titratable groups in the urine of rats studied with and without an acid load. Although normal rats excreted net acid (NAE), the latter was inversely related to the amount of food consumed. The rates of excretion of bicarbonate (HCO3), citrate, unmeasured organic anions, and NH+4 were higher in the night portion of the diurnal cycle. NAE rose dramatically when alkali intake was decreased by consuming the LED. Dietary and urinary organic anions were not identical because rats fed the LED supplemented with potassium citrate excreted <10% of this alkali load as citrate and <25% as HCO3. In the 24 h after 3,000 ¿mol NH4Cl was given intraperitoneally, H+ did not appear to be retained, yet NAE rose by only close to 2,000 ¿eq. The rate of excretion of titratable groups with a pK in the 3 to 5 pH range fell by close to 1,000 ¿eq; most of these changes occurred in the first 7 h after NH4Cl was given. We conclude that rat chow provides a large net alkali load. There appear to be two types of endogenous acid production, a form associated with a rise in NAE (e.g., sulfuric acid) and dietary alkali-driven endogenous net acid production, which titrates this alkali. Renal excretion of organic anions makes these acids end products of metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1998.274.6.F1037DOI Listing

Publication Analysis

Top Keywords

organic anions
12
diurnal cycle
8
urinary organic
8
anions identical
8
physiological disposal
4
disposal potential
4
potential alkali
4
alkali load
4
load diet
4
diet rat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!