We have developed a new small animal model for acute inhalation studies on combined effects of cold air and gaseous urban air pollutants. The anaesthetised, tracheostomised and paralysed guinea-pig was placed inside a small, sealed whole-body-box, in which it was ventilated mechanically by using cyclic negative pressure (Pbox) for active expansion of the chest. During a 2-h normal ventilation with warm humid air (n=6), there was a need for increasing Pbox with time to maintain the fixed tidal volume (VT) of 11 ml/kg. No such need was seen in the experiments with 15-min periods of isocapnic hyperventilation at 80 and 120 breaths/min (n=13). During the 2-h normal ventilation and in experiments with hyperventilation, there was a gradual increase in heart rate and small gradual decreases in PaCO2 and pH with time. Cold air + SO2 2.5 ppm produced a significantly stronger bronchoconstriction (deltaVT=-30.3+/-7.2%, n=6, P < 0.05) than clean cold dry air (deltaVT=-10.6+/-1.3%, n=6) and cold air + NO2 2.5 ppm (deltaVT=-13.2+/-3.3%, n=6), although these three exposure conditions produced similar decreases in tracheal air and retrotracheal tissue temperatures. With the present guinea-pig model, the combined respiratory effects of cold air and gaseous urban air pollutants can be investigated in a highly controlled manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0034-5687(98)00067-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!