To assess whether metabolic acidosis per se regulates rBSC-1, the rat medullary thick ascending limb (MTAL) apical Na+-K+(NH4+)-2Cl- cotransporter, rat MTALs were incubated for 16 h in an acid 1:1 mixture of Ham's nutrient mixture F-12 and Dulbecco's modified Eagle's medium. Cotransport activity was estimated in intact cells and membrane vesicles by intracellular pH and 22Na+ uptake measurements, respectively; rBSC-1 protein was quantified by immunoblotting analysis and mRNA by quantitative reverse transcription-polymerase chain reaction. As compared with incubation at pH approximately 7.35, acid incubation (pH approximately 7.10) up-regulated by 35-100% rBSC-1 transport activity in cells and membrane vesicles, and rBSC-1 protein and mRNA abundance. In contrast, acid incubation did not alter alkaline phosphatase and Na+/K+-ATPase enzyme activities or beta-actin protein abundance. After 3 h of in vivo chronic metabolic acidosis (CMA) rBSC-1 mRNA abundance increased in freshly harvested MTALs, which was accompanied after 1-6 days of CMA with enhanced rBSC-1 protein abundance. These results demonstrate that both in vivo and in vitro CMA stimulate rBSC-1 expression, which would contribute to the adaptive increase in MTAL absorption and urinary excretion of NH4+ in response to CMA.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.50.33681DOI Listing

Publication Analysis

Top Keywords

metabolic acidosis
12
rbsc-1 protein
12
vivo vitro
8
rbsc-1
8
na+-k+nh4+-2cl- cotransporter
8
cotransporter rat
8
rat medullary
8
medullary thick
8
thick ascending
8
ascending limb
8

Similar Publications

Renal tubular acidosis (RTA) is a group of disorders in which there is an alteration in acid-base homeostasis because of the impairment of nephrons to excrete hydrogen ions or reabsorb bicarbonate ions, resulting in chronic metabolic acidosis. RTA is an important cause of rickets, particularly 'resistant rickets'. Dental manifestations frequently reported in patients with RTA include enamel hypoplasia and amelogenesis imperfecta, affecting permanent dentition.

View Article and Find Full Text PDF

Successful Diagnosis of Sengers Syndrome Using a Comprehensive Genomic Analysis.

Mol Genet Genomic Med

January 2025

Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.

Background: Sengers syndrome is an autosomal recessive mitochondrial DNA depletion syndrome characterized by hypertrophic cardiomyopathy, congenital cataracts, skeletal myopathy, exercise intolerance, and lactic acidosis. Dysfunction of acylglycerol kinase (AGK) is responsible for the disease, and several AGK gene variants have been reported.

Methods: We employed a comprehensive genomic analysis approach, including whole-genome sequencing and RNA sequencing, combined with various bioinformatics tools.

View Article and Find Full Text PDF

Introduction: Hemorrhage is the leading cause of preventable deaths in trauma patients, resulting in 1.5 million deaths annually worldwide. Traditional trauma assessment follows the ABC (airway, breathing, circulation) sequence; evidence suggests the CAB (circulation, airway, breathing) approach to maintain perfusion and prevent hypotension.

View Article and Find Full Text PDF

Introduction: Nemaline myopathy (NM), also known as Nemalinosis, is a rare congenital muscle disease with an incidence of 1 in 50000. It is characterized by nemaline rods in muscle fibers, leading to muscle weakness. We reported a case of NM revealed by cardiac involvement, and we highlighted the challenges in diagnosing this condition as well as its poor prognosis.

View Article and Find Full Text PDF

Background: Cardiovascular disease is a major cause of increasing morbidity and mortality in type 1 diabetes mellitus (T1DM). Although insulin therapy is the cornerstone of T1DM, its difficult use and narrow therapeutic index make it difficult for patients to reach glycated haemoglobin targets, increasing the risk of cardiovascular events. Therefore, the combination of sodium-glucose transporter 2 inhibitors (SGLT2i) can likely improve or provide more cardiovascular benefits to patients with T1DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!