Exposure of progenitor cells with chondrogenic potential to recombinant human osteogenic protein-1 [rhOP-1, or bone morphogenetic protein-7 (BMP-7] may be of therapeutic interest in the regeneration of articular cartilage. Therefore, in this study, we examined the influence of rhOP-1 on cartilage formation by human perichondrium tissue containing progenitor cells with chondrogenic potential in vitro. Fragments of outer ear perichondrium tissue were embedded in clotting autologous blood to which rhOP-1 had been added or not (controls), and the resulting explant was cultured for 3 weeks without further addition of rhOP-1. Cartilage formation was monitored biochemically by measuring [³5;S]sulfate incorporation into proteoglycans and histologically by monitoring the presence of metachromatic matrix with cells in nests. The presence of rhOP-1 in the explant at the beginning of culture stimulated [³5;S]sulfate incorporation into proteoglycans in a dose-dependent manner after 3 weeks of culture. Maximal stimulation was reached at 40 microgram/ml. Histology revealed that explants treated with 20-200 microgram/ml rhOP-1, but not untreated control explants, contained areas of metachromatic-staining matrix with chondrocytes in cell nests. These results suggest that rhOP-1 stimulates differentiation of cartilage from perichondrium tissue. The direct actions of rhOP-1 on perichondrium cells to stimulate chondrocytic differentiation and production of cartilage matrix in vitro provide a cellular mechanism for the induction of cartilage formation by rhOP-1 in vivo. Thus, rhOP-1 may promote early steps in the cascade of events leading to cartilage formation. Therefore, rhOP-1 could be an interesting factor for regeneration of cartilage in articular cartilage defects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.1998.4.305 | DOI Listing |
Biomater Adv
January 2025
Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA. Electronic address:
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA. Electronic address:
The mechanical properties of the extracellular matrix critically regulate stem cell differentiation in 3D. Alginate hydrogels with tunable bulk stiffness and viscoelasticity can modulate differentiation in 3D through mechanotransduction. Such enhanced differentiation is correlated with changes in the local matrix compliance- the extent of matrix deformation under applied load.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, China.
Patellar dysplasia (PD) can cause patellar dislocation and subsequent osteoarthritis (OA) development. Herein, a novel ABCA6 mutation contributing to a four-generation family with familiar patellar dysplasia (FPD) is identified. In this study, whole exome sequencing (WES) and genetic linkage analysis across a four-generation lineage presenting with six cases of FPD are conducted.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China.
Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26 tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26 tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing.
View Article and Find Full Text PDFWilderness Environ Med
January 2025
Emergency Department, Henry Ford Jackson Hospital, Jackson, MI.
Introduction: Fishhook injuries are a common occurrence among anglers. There are no guidelines for prophylactic antibiotic use after fishhook removal. This study analyzed the management of embedded fishhooks, prophylactic antibiotic use, and complication rate at a Michigan county emergency department to observe whether antibiotic use changes patient outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!