Tissue Engineering is an emerging field of medical research in which there is tremendous activity. Many of these products rely on the use of a cellular component co-formulated with a natural or synthetic biomaterial. At this time, though, there are no consensus safety or efficacy standards for tissue-engineered products. We describe general approaches for assessment of the safety and efficacy of cell-based tissue-engineered products which will lead to reliable medical products for human use. This article provides a general summary of the factors that should be considered in the design and development of cell- and tissue-based products. Seven areas are considered: cell and tissue sourcing; cell and tissue characterization; biomaterials testing; quality assurance; quality control; and nonclinical testing and clinical evaluation. Factors relevant to these areas have been discussed to provide a set of recommendations on which development of products can be standardized. Where relevant, the discussion has been separated in each area to issues that are independent or dependent on cell source. Also, examples are provided of how these guidelines would be applied to two product types that represent somewhat extreme ends of the spectrum for tissue engineering applications. The first example is a product whose mechanism of action is to provide locally-acting structural repair or enhancement in vivo. The second example is a product whose mechanism of action involves systemically distributed physiologically or pharmacologically active products. In general, we have limited the discussion of product types to those that are implanted into the patient for relatively long periods of time. We believe that adoption of these voluntary guidelines would lead to products that are more consistent in quality and performance as well as more rapidly developed.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.1998.4.239DOI Listing

Publication Analysis

Top Keywords

tissue-engineered products
12
products
9
tissue engineering
8
safety efficacy
8
cell tissue
8
product types
8
example product
8
product mechanism
8
mechanism action
8
voluntary guidance
4

Similar Publications

Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.

View Article and Find Full Text PDF

Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts.

Gels

December 2024

Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, 27201 Kladno, Czech Republic.

Cardiovascular disease is one of the leading causes of death and serious illness in Europe and worldwide. Conventional treatment-replacing the damaged blood vessel with an autologous graft-is not always affordable for the patient, so alternative approaches are being sought. One such approach is patient-specific tissue bioprinting, which allows for precise distribution of cells, material, and biochemical signals.

View Article and Find Full Text PDF

Reproducibility and Consistency of Isolation Protocols for Fibroblasts, Smooth Muscle Cells, and Epithelial Cells from the Human Vagina.

Cells

January 2025

Reproductive Biology Laboratory, Amsterdam UMC-Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

(1) Background: For the reconstruction of a human vagina, various surgical procedures are available that are often associated with complications due to their failure to mimic the physiology of the human vagina. We recently developed a vascularized, organ-specific matrix from healthy human vaginal wall tissue with suitable biomechanical properties. A superior graft would require further extensive colonization with autologous vaginal cells to reduce complications upon implantation.

View Article and Find Full Text PDF

Leveraging the predictive power of a 3D in vitro vascularization screening assay for hydrogel-based tissue-engineered periosteum allograft healing.

Biomater Adv

January 2025

Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA. Electronic address:

A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs.

View Article and Find Full Text PDF

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!