Off-axis electron holography in the transmission electron microscope was used to correlate the physical and magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria. The magnetite crystals were all single magnetic domains, and the magnetization directions of small superparamagnetic crystals were constrained by magnetic interactions with larger crystals in the chains. Shape anisotropy was found to dominate magnetocrystalline anisotropy in elongated crystals. A coercive field between 300 and 450 oersted was determined for one chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.282.5395.1868 | DOI Listing |
Sci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFNutrients
January 2025
Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.
Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.
Molecules
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Paper is a thin nonwoven material made from cellulose fibers as the main raw material together with some additives. Paper is highly flammable, leading to the destruction of countless precious ancient books, documents, and art works in fire disasters. In recent years, researchers have made a lot of efforts in order to obtain more durable and fire-retardant paper.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
This study investigates the grain morphology, microstructure, magnetic properties and shape memory properties of an FeNiCoAlTaB (at%) high-entropy alloy (HEA) cold-rolled to 98%. The EBSD results show that the texture intensities of the samples annealed at 1300 °C for 0.5 or 1 h are 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!