Thermodynamic dissection of the substrate-ribozyme interaction in the hammerhead ribozyme.

Biochemistry

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.

Published: December 1998

The free energy of substrate binding to the hammerhead ribozyme was compared for 10 different hammerheads that differed in the length and sequence of their substrate recognition helices. These hammerheads were selected because neither ribozyme nor substrate oligonucleotide formed detectable alternate secondary structures. The observed free energies of binding varied from -8 to -24 kcal/mol and agreed very well with binding energies calculated from the nearest-neighbor free energies if a constant energetic penalty of DeltaG degreescore = +3.3 +/- 1 kcal/mol is used for the catalytic core. A set of substrates that contained a competing hairpin secondary structure showed weaker binding to the ribozyme by an amount consistent with the predicted free energy for hairpin formation. These thermodynamic conclusions permit the prediction of substrate binding affinities for ribozyme-substrate pairs of any helix length and sequence, and thus, should be very valuable for the rational design of ribozymes directed toward gene inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi981740bDOI Listing

Publication Analysis

Top Keywords

hammerhead ribozyme
8
free energy
8
substrate binding
8
length sequence
8
free energies
8
binding
5
thermodynamic dissection
4
dissection substrate-ribozyme
4
substrate-ribozyme interaction
4
interaction hammerhead
4

Similar Publications

Cell-Specific Control of Mammalian Gene Expression Using DNA Repair Inducible Ribozyme Switches.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha, 410082, China.

The ability to control gene expression is vital for elucidating gene functions and developing next-generation therapeutics. Current techniques are challenged by the lack of cell-specific control designs or immunogenicity risk from foreign proteins. We develop a DNA repair inducible ribozyme switch that enables cell-specific control of gene expression in cells and in vivo.

View Article and Find Full Text PDF

Elucidating Evolutionary Mechanisms and Variants of the Hammerhead Ribozyme Using In Vitro Selection.

Chembiochem

November 2024

Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada.

The Hammerhead Ribozyme (HHR) is a ubiquitous RNA enzyme that catalyzes site-specific intramolecular cleavage. While mutations to its catalytic core have traditionally been viewed as detrimental to its activity, several discoveries of naturally occurring variants of the full-length ribozyme challenge this notion, suggesting a deeper understanding of HHR evolution and functionality. By systematically introducing mutations at key nucleotide positions within the catalytic core, we generated single-, double-, and triple-mutation libraries to explore the sequence requirements and evolution of a full-length HHR.

View Article and Find Full Text PDF

The structure and catalytic mechanism of a pseudoknot-containing hammerhead ribozyme.

Nat Commun

August 2024

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.

Article Synopsis
  • The study reveals the crystal structure of a hammerhead ribozyme containing a pseudoknot, showing it closely resembles the pistol ribozyme in secondary structure.
  • The ribozyme's activity relies more on the presence of the G8 2'OH than on magnesium ions, suggesting similar catalytic mechanisms to the extended hammerhead but not to the pistol ribozyme.
  • The findings highlight that although the overall structure is alike, the cleavage site differs, allowing the PK hammerhead to maintain its unique mechanism and exhibit better activity compared to other hammerhead ribozymes.
View Article and Find Full Text PDF

Two RNA Folds from One Sequence: A Ribozyme with Versatile Substrate Processing Abilities.

Angew Chem Int Ed Engl

September 2024

Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany.

We report the design of a single RNA sequence capable of adopting one of two ribozyme folds and catalyzing the cleavage and/or ligation of the respective substrates. The RNA is able to change its conformation in response to its environment, hence it is called chameleon ribozyme (CHR). Efficient RNA cleavage of two different substrates as well as RNA ligation by CHR is demonstrated in separate experiments and in a one pot reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!