A new CC chemokine, designated CKbeta-8 or myeloid progenitor inhibitor factor-1, was recently identified in a large scale sequencing effort and was cloned from a human aortic endothelial library. CKbeta-8 cDNA encodes a signal sequence of 21 amino acids, followed by a 99-amino acid predicted mature form. CKbeta-8 was expressed and purified from a baculovirus insect cell expression system, which resulted in the identification of different N-terminal variants of the secreted chemokine. The three major forms (containing amino acids 1-99, 24-99, and 25-99 of the secreted chemokine) showed a large variation in potency. CKbeta-8 activated both monocytes and eosinophils to mobilize intracellular calcium; however, the shortest form of CKbeta-8 (25-99) was >2 orders of magnitude more potent than the longest form. Cross-desensitization experiments in both monocytes and eosinophils suggested that the CCR1 receptor was probably the predominant receptor that mediates this chemokine's physiologic response. However, incomplete desensitization was encountered in both cell systems, suggesting involvement of an additional receptor(s). Interestingly, the short form of CKbeta-8 was the most potent chemotactic chemokine that we have ever evaluated in the monocyte system (EC50 = 54 pM). However, in contrast to its action on monocytes, CKbeta-8 was a very poor chemotactic factor for eosinophils.
Download full-text PDF |
Source |
---|
J Immunol
December 1998
Department of Vascular Biology, SmithKline Beecham Pharmaceuticals, Harlow, Essex, United Kingdom.
A new CC chemokine, designated CKbeta-8 or myeloid progenitor inhibitor factor-1, was recently identified in a large scale sequencing effort and was cloned from a human aortic endothelial library. CKbeta-8 cDNA encodes a signal sequence of 21 amino acids, followed by a 99-amino acid predicted mature form. CKbeta-8 was expressed and purified from a baculovirus insect cell expression system, which resulted in the identification of different N-terminal variants of the secreted chemokine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!