GATA6 belongs to a family of zinc finger transcription factors that play important roles in transducing nuclear events that regulate cellular differentiation and embryonic morphogenesis in vertebrate species. To examine the function of GATA6 during embryonic development, gene targeting was used to generate GATA6-deficient (GATA6(-/-)) ES cells and mice harboring a null mutation in GATA6. Differentiated embryoid bodies derived from GATA6(-/-) ES cells lack a covering layer of visceral endoderm and severely attenuate, or fail to express, genes encoding early and late endodermal markers, including HNF4, GATA4, alpha-fetoprotein (AFP), and HNF3beta. Homozygous GATA6(-/-) mice died between embryonic day (E) 6.5 and E7. 5 and exhibited a specific defect in endoderm differentiation including severely down-regulated expression of GATA4 and absence of HNF4 gene expression. Moreover, widespread programmed cell death was observed within the embryonic ectoderm of GATA6-deficient embryos, a finding also observed in HNF4-deficient embryos. Consistent with these data, forced expression of GATA6 activated the HNF4 promoter in nonendodermal cells. Finally, to examine the function of GATA6 during later embryonic development, GATA6(-/-)-C57BL/6 chimeric mice were generated. lacZ-tagged GATA6(-/-) ES cells contributed to all embryonic tissues with the exception of the endodermally derived bronchial epithelium. Taken together, these data suggest a model in which GATA6 lies upstream of HNF4 in a transcriptional cascade that regulates differentiation of the visceral endoderm. In addition, these data demonstrate that GATA6 is required for establishment of the endodermally derived bronchial epithelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC317242PMC
http://dx.doi.org/10.1101/gad.12.22.3579DOI Listing

Publication Analysis

Top Keywords

visceral endoderm
12
gata6-/- cells
12
gata6
8
differentiation visceral
8
examine function
8
function gata6
8
gata6 embryonic
8
embryonic development
8
endodermally derived
8
derived bronchial
8

Similar Publications

Talpid3 is a basal body protein required for the formation of primary cilia, an organelle involved in signal transduction. Here, we asked if Talpid3 has a role in the regulation of differentiation and/or self-renewal of ES cells and whether cells lacking cilia due to a deletion in Talpid3 can be reprogrammed to induced pluripotent stem (iPS) cells. We show that mouse embryonic limb fibroblasts which lack primary cilia with a targeted deletion in the () gene can be efficiently reprogrammed to iPS cells.

View Article and Find Full Text PDF

In the mouse, there is preferential inactivation of the paternally-derived X chromosome in extraembryonic tissues of early embryos, including trophectoderm and primitive endoderm or hypoblast. Although derivatives of these tissue have long been considered to be purely extraembryonic in nature, recent studies have shown that hypoblast-derived cells of the 'extraembryonic' visceral endoderm make a substantial cellular contribution to the definitive gut of the fetus. This raises questions about the eventual fate of these cells in the adult and potential disease implications due to the skewed inactivation of the paternally derived X in females heterozygous for X-linked mutations.

View Article and Find Full Text PDF

Iqsec1 (IQ motif and Sec7 domain-containing protein 1), also known as BRAG2 (Brefeldin A-resistant Arf-GEF 2), is a guanine nucleotide exchange factor that regulates membrane trafficking, cytoskeletal organization, and signal transduction by activating class II and III ADP-ribosylation factors. To investigate the physiological role of Iqsec1 at the whole animal level, we generated Iqsec1-deficient mice using CRISPR/Cas9-mediated gene editing. Nearly all Iqsec1 mice (99%) exhibited embryonic lethality with severe growth retardation.

View Article and Find Full Text PDF

Background: Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how membrane deformation affects vesicle fusion by observing late endosomes and lysosomes in mouse yolk sac cells with large endocytic vesicles, revealing two fusion modes: homotypic (fast fusion of similar vesicles) and heterotypic (slow fusion with lysosomes).
  • Mathematical models indicated that vesicle size significantly influences fusion types, while forces from membrane fluctuations can mitigate size effects on fusion.
  • The study found that dynamic actin remodeling is crucial for rapid homotypic fusion, with cofilin playing an essential role in regulating actin activity during the fusion process, highlighting the importance of actin in efficient membrane trafficking.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!