1. 1alpha,25-dihydroxyvitamin3 (VD) is a nuclear hormone that has important cell regulatory functions but also a strong calcemic effect. EB1089 is a potent antiproliferative VD analogue, which has a modified side chain resulting in increased metabolic stability and a selective functional profile. Since EB1089 is considered for potential systemic application, it will be investigated to what extent its recently identified metabolites (hydroxylated at positions C26 and C26a) contribute to biological profile of the VD analogue. 2. Limited protease digestion analysis demonstrated that EB1089 is able to stabilize the high affinity ligand binding conformation of the VDR, starting at concentrations of 0.1 nM and affecting up to 80% of all receptor molecules. The metabolites EB1445 and EB1470 showed to be 100 fold less potent than EB1089, whereas the remaining three metabolites (EB1435, EB1436 and EB1446) showed a clearly reduced ability to stabilize the high affinity ligand binding conformation. Interestingly, at pharmacological concentrations all EB1089 metabolites stabilized a second, apparently lower affinity conformation to a much higher extent than EB1089. 3. In reporter gene assays all metabolites showed lower potency than EB1089. Moreover, the preference of EB1089 for activation of VDR binding to sites formed by inverted palindromic arrangements spaced by nine nucleotide (IP9-type VD response elements) appeared to be reduced (with EB1445 and EB1470) or completely lost (with EB1435, EB1436 and EB1446). The ranking of EB1089 and its metabolites that was obtained by limited protease digestion and reporter gene assays was confirmed by an analysis of their antiproliferative effect in breast cancer cells. . The potency and selectivity of the EB1089 metabolites in mediating gene regulatory effects was found to be drastically reduced in comparison to the parent compound suggesting that the contribution of the metabolites to the biological effect of EB1089 is minor. However, the compounds showed to be interesting tools for understanding the selective biological profile of EB1089.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1571001PMC
http://dx.doi.org/10.1038/sj.bjp.0702086DOI Listing

Publication Analysis

Top Keywords

eb1089
13
eb1089 metabolites
12
profile eb1089
8
metabolites
8
biological profile
8
limited protease
8
protease digestion
8
stabilize high
8
high affinity
8
affinity ligand
8

Similar Publications

Vitamin D Significantly Inhibits Carcinogenesis in the Mogp-TAg Mouse Model of Fallopian Tube Ovarian Cancer.

Nutrients

September 2024

Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Endeavor Health, Evanston, IL 60201, USA.

Epidemiological and observational studies suggest that vitamin D has potential for the chemoprevention of ovarian cancer. The anticancer effect of vitamin D in the fallopian tube epithelium (FTE), which is now thought to harbor the precursor cells for high grade ovarian cancer, is not known. The purpose of this study was to investigate whether vitamin D can inhibit carcinogenesis in the mogp-TAg fallopian tube (FT) ovarian cancer mouse model and examine underlying mechanisms.

View Article and Find Full Text PDF

The vitamin D analog EB1089 sensitizes triple-negative breast cancer cells to the antiproliferative effects of antiestrogens.

Adv Med Sci

September 2024

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico; Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico. Electronic address:

Purpose: Patients bearing estrogen receptor (ER)α-negative breast cancer tumors confront poor prognosis and are typically unresponsive to hormone therapy. Previous studies have shown that calcitriol, the active vitamin D metabolite, can induce ERα expression in ERα-negative cells. EB1089, a calcitriol analog with reduced calcemic effects, exhibits greater potency than calcitriol in inhibiting cancer cell growth.

View Article and Find Full Text PDF

EB1089 Increases the Antiproliferative Response of Lapatinib in Combination with Antiestrogens in HER2-Positive Breast Cancer Cells.

Int J Mol Sci

March 2024

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

HER2-positive breast cancer is associated with aggressive behavior and reduced survival rates. Calcitriol restores the antiproliferative activity of antiestrogens in estrogen receptor (ER)-negative breast cancer cells by re-expressing ERα. Furthermore, calcitriol and its analog, EB1089, enhance responses to standard anti-cancer drugs.

View Article and Find Full Text PDF

Vitamin D has been shown to have antiviral activity in a number of different systems. However, few studies have investigated whether the antiviral activity is exerted through the vitamin D receptor (VDR). In this study, we investigated whether the antiviral activity of a vitamin D receptor agonist (EB1089) towards dengue virus (DENV) was modulated by VDR.

View Article and Find Full Text PDF

Ternary nanocomposite potentiates the lysophosphatidic acid effect on human osteoblast (MG63) maturation.

Nanomedicine (Lond)

September 2023

Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK.

This study aimed to investigate the potential of ternary nanocomposite (TNC) to support MG63 osteoblast maturation to EB1089-(3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP) cotreatment. Binary (P25/reduced graphene oxide [rGO]) nanocomposite was prepared, and silver (Ag) nanoparticles were loaded onto the surface to form TNC (P25/rGO/Ag). The influence of TNC on proliferation, alkaline phosphatase activity and osteogenic gene expression was evaluated in a model of osteoblast maturation wherein MG63 were costimulated with EB1089 and FHBP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!