Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using autoradiography, binding sites for 1,25(OH)2 vitamin D3 are found in certain genital organs of male Siberian hamsters (Phodopus sungorus), in particular in basal epithelial cells and fibroblasts of the lamina propria of prostate glands. Scattered labeled cells are also present in the epithelium of coagulation and urethral glands. In contrast to the findings in mice, under the conditions of the experiment, 1,25(OH)2 vitamin D3 binding sites are not recognizable in other accessory sex glands and gonads. The frequency of basal epithelial cells with [3H]1,25(OH)2 vitamin D3 nuclear binding is higher in regressed dorsal prostate glands of animals living in short photoperiods. The data suggest that 1,25(OH)2 vitamin D3 may promote proliferation and differentiation in basal epithelial cells, modulated by the seasonal and functional status of the animal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0960-0760(93)90222-i | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!