Mechanisms of cytotoxicity by cosmetic ingredients in sea urchin eggs.

Arch Environ Contam Toxicol

Laboratoire de Physiologie et Toxicologie Environnementales, Université de Nice-Sophia Antipolis, Faculté des Sciences, BP71-06108-Nice, France.

Published: January 1999

The acute cytotoxicities of four cosmetic ingredients: a preservative, imidazolidinylurea (IU) and three mild surfactants, cocamido propyl hydroxy sultaine (CAS), magnesium laureth sulfate (Mg LES), and decyl glucoside (APG) were studied using sea urchin eggs. The cellular targets of these compounds were identified by studying the effects on calcium homeostasis, intracellular pH, sodium and potassium contents, protein and DNA synthesis, and protein phosphorylation. These compounds inhibited the first cleavage of sea urchin eggs in a dose-dependent fashion with half maximal doses (IC50) from 30 microg/ml for Mg LES, 60 microg/ml for IU, 83 microg/ml for CAS, to above 400 microg/ml for APG. The time at which a compound showed the greatest toxicity to the cell cycle was definable for APG (between 20 and 50 min postfertilization) and IU (from fertilization to 50 min later); the other compounds being toxic throughout division. Compounds exhibited toxicity to a wide range of cellular targets. IU, the least toxic, mainly operates through inhibition of protein and DNA syntheses. CAS and Mg LES produced nonspecific cytotoxicity related to alterations of membrane and endomembrane permeabilities resulting in ionic disequilibrium (Na+, K+, Ca2+) and inhibition of intracellular storage of Ca2+. The APG effect mainly involved intracellular pH and DNA synthesis, a hypothesis suggested by the narrow postfertilization period of maximal toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002449900439DOI Listing

Publication Analysis

Top Keywords

sea urchin
12
urchin eggs
12
cosmetic ingredients
8
cellular targets
8
protein dna
8
dna synthesis
8
mechanisms cytotoxicity
4
cytotoxicity cosmetic
4
ingredients sea
4
eggs acute
4

Similar Publications

On Oscillations in the External Electrical Potential of Sea Urchins.

ACS Omega

January 2025

Unconventional Computing Laboratory, University of the West of England, Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, U.K.

Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.

View Article and Find Full Text PDF

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

Echinoderms, a diverse group of marine invertebrates including starfish, sea urchins, and sea cucumbers, have been recognized as prolific sources of structurally diverse natural products. In the past five years, remarkable progress has been made in the isolation, structural elucidation, and pharmacological assessment of these bioactive compounds. These metabolites, including polysaccharides, triterpenoids, steroids, and peptides, demonstrate potent bioactivities such as anticancer, anti-inflammatory, antiviral, and antimicrobial effects, providing valuable insights and scaffolds for drug discovery.

View Article and Find Full Text PDF

How Significant Are Marine Invertebrate Collagens? Exploring Trends in Research and Innovation.

Mar Drugs

December 2024

CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.

This review is focused on the research, innovation and technological breakthroughs on marine invertebrate collagens and their applications. The findings reveal that research dates back to the 1970s, and after a period of reduced activity, interest in collagens from several marine invertebrate groups was renewed around 2008, likely driven by the increased commercial interest in these biomolecules of marine origin. Research and development are predominantly reported from China and Japan, highlighting significant research interest in cnidarians (jellyfish), echinoderms (sea cucumbers, sea urchins and starfish), molluscs (squid and cuttlefish) and sponges.

View Article and Find Full Text PDF

Expression of 11 genes of the Hox cluster (SiHox1, 2, 3, 5, 6, 7, 8, 9/10, 11/13a, 11/13b, and 11/13c) was assessed in the sea urchin Strongylocentrotus intermedius at early developmental stages, including the blastula (13 h post fertilization (hpf)), gastrula (35 hpf), prism (46 hpf), and pluteus (4 and 9 days post fertilization (dpf)) stages. Expression of SiHox7, 11/13b, and 11/13c was observed at the blastula stage; early activation of 11/13c was detected for the first time in regular sea urchins. The expression level was very low at the gastrula and prism stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!