To investigate the role of helix formation in the folding of protein L, a 62 residue alpha/beta protein, we studied the consequences of both single and multiple mutations in the helix on the kinetics of folding. A triple mutant with 11 additional carbon atoms in core residues in the amino-terminal portion of the helix folded substantially faster than wild type, suggesting that hydrophobic association with residues elsewhere in the protein occurs at the rate-limiting step in folding. However, helix-destabilizing mutations had little effect on the rate of folding; in particular, a triple glycine substitution on the solvent-exposed side of the helix increased the unfolding rate 56-fold while reducing the folding rate less than threefold. Thus, in contrast to the predictions of models of folding involving the coalescence of well-formed secondary structure elements, the single helix in protein L appears to be largely disrupted at the rate-limiting step in folding and unfolding.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1998.2200DOI Listing

Publication Analysis

Top Keywords

rate-limiting step
12
step folding
12
single helix
8
helix protein
8
disrupted rate-limiting
8
folding
8
folding triple
8
protein
5
helix
5
protein disrupted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!