Objectives: The aim of this work was to present a preliminary numerical analysis of the integration process of dental implants using a finite element simulation of the dynamic response following impulse excitation. Assessment of the osseointegration process has been previously examined using a numerical approach by calculating the natural frequency of a cantilever attached to the implant. The methodology adopted in this work allows a direct measurement of the implant response following impulse loading and avoids the addition of a bulky cantilever set-up.

Methods: The geometric configuration was obtained by averaging the coordinate data from tomographic scans of 14 mandibles. The materials properties were approximated from experimental analysis performed on trabecular and cortical bone tissue. A load was applied to the top of the implant in one direction resulting in an initial displacement. The implant was then freed and allowed to vibrate over approximately 10 cycles. Three fixity conditions were assumed by changing the properties of the surrounding bone ranging from full integration to a poorly integrated implant typical of the situation during bone healing following surgery. The results of the three fixity conditions were compared by calculating the fundamental displacement amplitudes and frequencies of the vibrating impact.

Results: The calculated results indicated that the implant vibrated at a predominant frequency when partially integrated with a displacement principally in the direction of the applied impulse. However, when the implant was fully integrated a more complex vibration pattern ensued, suggesting the superposition of two or more fundamentals.

Significance: Attention has been paid to the formulation of the numerical model for validation purposes as well as a reliable reference for the optimum interpretation of the experimental data. In this way it was possible to establish a simulation procedure to investigate the response of the tissues surrounding the implant and their properties at different stages of healing. It should be pointed out that the numerical procedures represented a valid preliminary approach to the problem and were capable of indicating a guide to the optimum design of the experimental apparatus for measurement of displacement and frequency in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0109-5641(97)80103-0DOI Listing

Publication Analysis

Top Keywords

integration process
8
process dental
8
dental implants
8
numerical analysis
8
dynamic response
8
response impulse
8
implant
8
three fixity
8
fixity conditions
8
numerical
5

Similar Publications

Predicting transcriptional changes induced by molecules with MiTCP.

Brief Bioinform

November 2024

Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.

Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.

View Article and Find Full Text PDF

Pig production is an agricultural sector of great economic and social relevance to Brazil and global markets. Feed efficiency traits directly influence the sustainability of pig production due to the economic impact of feed costs on the production system and the environmental footprint of the industry. Therefore, breeding for improved feed efficiency has been a target of worldwide pig breeding programs.

View Article and Find Full Text PDF

Multifunctional Artificial Electric Synapse of MoSe-Based Memristor toward Neuromorphic Application.

J Phys Chem Lett

January 2025

Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.

View Article and Find Full Text PDF

Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear.

View Article and Find Full Text PDF

The needs of youth at-risk and their families, facing multiple problems and serious mental health issues, exceed the expertise and possibilities of a single stakeholder (professional, organization, municipality). These youngsters require care in which the expertise of different professionals and organizations is integrated. However, combining various types of expertise to provide integrated care to youth at-risk is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!