Our preceding paper described SPL-dependent changes in the shape of transfer functions recorded from inner and outer hair cells as well as supporting cells, in the 500-2500 Hz regions of the Mongolian gerbil cochlea. As SPL was increased, large shifts were observed in the peak of the transfer function. A strongly compressive nonlinearity was also observed at CF. This paper examines the data from the perspective of intensity coding in the auditory periphery. Based on the data, we offer a new explanation for the mechanisms underlying the different dynamic ranges of low and high threshold auditory neurons. We also find that, for pure tone stimuli, the growth of excitation at the characteristic place saturates rapidly, and cannot encode the wide dynamic range of loudness. The data are analyzed to explore other excitation pattern candidates for loudness coding. The growth of the peak of the IHC transfer function, as well as the growth of the response area, have been found to be linearly related to loudness growth over most of its dynamic range. Implications of the data for auditory intensity coding are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-5955(98)00135-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!