Nuclear-encoded mitochondrial matrix proteins in most cases contain N-terminal targeting signals and are imported in a linear N- to C-terminal (N-->C) fashion. We asked whether import can also occur in a C- to N-terminal direction (C-->N). We placed targeting signals at the C-terminus of passenger proteins. Import did occur in this 'backwards' fashion. It paralleled that of the 'normal' N-->C mechanism in terms of efficiency, rate, energetic requirements and ability to mediate unfolding and refolding during and following import of protein containing a folded domain. Furthermore, this reaction was mediated by the TIM17-23 machinery. The import pathway taken by certain inner-membrane proteins contains elements of such a C-->N translocation pathway, as they are targeted to mitochondria by internal targeting signals. These internal targeting signals appear to form loop structures together with neighbouring transmembrane segments, and penetrate the inner membrane in a membrane-potential-dependent manner. The dimeric TIM17-23 complex, together with mt-Hsp70, acts on both sides of the loop structure to facilitate their translocation into the matrix. On one side of the loop import occurs in the common N-->C direction, whereas the translocation of the other side involves the novel C-->N import direction. We conclude therefore that the mitochondrial import machinery displays no preference for the directionality of the import process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170998 | PMC |
http://dx.doi.org/10.1093/emboj/17.22.6508 | DOI Listing |
Stem Cell Res Ther
January 2025
Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
Background: Closed head injury (CHI) provokes a prominent neuroinflammation that may lead to long-term health consequences. Microglia plays pivotal and complex roles in neuroinflammation-mediated neuronal insult and repair following CHI. We previously reported that induced neural stem cells (iNSCs) can block the effects of CXCL12/CXCR4 signaling on NF-κB activation in activated microglia by CXCR4 overexpression.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
J Nanobiotechnology
January 2025
Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
Overproduction of reactive oxygen species (ROS), elevated synovial inflammation, synovial hyperplasia and fibrosis are the main characteristic of microenvironment in rheumatoid arthritis (RA). Macrophages and fibroblast-like synoviocytes (FLSs) play crucial roles in the progression of RA. Hence, synergistic combination of ROS scavenging, macrophage polarization from pro-inflammatory M1 phenotype towards M2 anti-inflammatory phenotype, and restoring homeostasis of FLSs will provide a promising therapeutic strategy for RA.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: Dishevelled-associated activator of morphogenesis1 (DAAM1) is a member of the evolutionarily conserved Formin family and plays a significant role in the malignant progression of various human cancers. This study aims to explore the clinical and biological significance of DAAM1 in pancreatic cancer.
Methods: Multiple public datasets and an in-house cohort were utilized to assess the clinical relevance of DAAM1 in pancreatic cancer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!