Study Design: The efficacy of a specially designed mineralized bovine collagen matrix as a carrier for bone marrow stem cells was studied in a rabbit posterolateral spinal fusion model.

Objectives: To determine if bone marrow cells added to Healos matrix will lead to fusion rates, biomechanical properties, and histologic properties comparable with those of fusions using autologous iliac crest bone graft; and to determine if the addition of preservative-free heparin to anticoagulate the bone marrow during harvest will adversely affect the fusion rate.

Summary Of Background Data: Although the development of new preparations of osteoinductive agents has advanced rapidly in recent years, the carrier systems that have been used in their application have received less attention. The composition and structure of the matrix used are key components affecting the ability of the matrix to function as a scaffold on which cells can migrate, adhere, proliferate, and form bone. The composition and design of matrix components also determine the ability of osteoinductive agents to influence local and hematogenously derived osteogenic precursor cells, which migrate to or are brought into the fusion site. Thus, the properties of the carrier can affect the behavior and efficacy of the osteoinductive agent that is used. The authors studied the properties of a new mineralized collagen matrix called Healos, which has been engineered specifically for spinal fusion application.

Methods: Forty-four adult female New Zealand white rabbits were divided into five groups. Groups 1-4 underwent bilateral intertransverse fusion between L5 and L6. The fusions were augmented with either autologous iliac crest bone graft, Healos matrix alone, Healos matrix mixed with autologous bone marrow, or Healos matrix combined with heparinized autologous bone marrow. At 8 weeks after surgery, the fusions were characterized radiographically, histologically, and biomechanically. The rate of fusion was determined by radiographic analysis. The fifth group consisted of two animals whose bone marrow was aspirated from their tibias and femurs and then sent for determination of total nucleated cell count.

Results: At 8 weeks, the radiographically determined fusion rate for autologous bone graft was 75% (9/12 animals), compared with 100% (10/10 and 9/9 animals) for groups in which fusions were done by using Healos matrix augmented with bone marrow (P < or = 0.1). Matrix used alone yielded a fusion rate of 18% (2/11 animals, P < or = 0.006). Histologically, the most mature bone was seen in the group augmented with autologous iliac crest graft, followed in decreasing order by the groups augmented with Healos with heparinized bone marrow, Healos with unheparinized bone marrow, and Healos alone. Biomechanically, the group augmented with autologous graft had the highest mean stiffness, followed by the groups augmented with Healos with heparinized bone marrow, Healos with untreated bone marrow, and finally Healos matrix alone. However, the differences in stiffness between groups were not statistically significant with the number of spines tested.

Conclusions: These results show that Healos is an osteoconductive matrix that can be a useful carrier in the biologic and mechanical environment of a posterolateral intertransverse fusion site. In combination with bone marrow, it produces fusion rates that are comparable with those of autologous bone graft. However, it must be combined with an osteoinductive or osteogenic agent to ensure reliable fusion rates and alone cannot produce reliable osteogenesis. The Healos matrix was not compared with other commercially available matrices currently in use. Therefore, the efficacy of Healos relative to these other materials could not be determined.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00007632-199811010-00005DOI Listing

Publication Analysis

Top Keywords

bone marrow
48
healos matrix
28
bone
18
bone graft
16
autologous bone
16
marrow healos
16
healos
15
matrix
14
fusion
13
spinal fusion
12

Similar Publications

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.

View Article and Find Full Text PDF

Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a bone-marrow-based cancer of plasma cells. Over the last 2 decades, marked treatment advances have led to improvements in the overall survival (OS) of patients with this disease. Key developments include the use of chemotherapy, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Introduction: Burkitt lymphoma (BL) is a rare and aggressive subtype of non-Hodgkin's lymphoma. Several studies have identified prognostic factors (PFs) for disease progression and mortality among adults with BL. However, there is no consensus on risk stratification based on PFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!