Cbl-Crkl and Crkl-C3G interactions have been implicated in T cell and B cell receptor signaling and in the regulation of the small GTPase, Rap1. Recent evidence suggests that Rap1 plays a prominent role in the regulation of immunoreceptor tyrosine-based activation motif (ITAM) signaling. To gain insight into the role of Crkl in myeloid ITAM signaling, we investigated Cbl-Crkl and Crkl-C3G interactions following Fc gamma RI aggregation in U937IF cells. Fc gamma RI cross-linking of U937IF cells results in the tyrosine phosphorylation of Cbl, Crkl, and Hef-1, an increase in the association of Crkl with Cbl via direct SH2 domain interaction and increased Crkl-Hef-1 binding. Crkl constitutively binds to the guanine nucleotide-releasing protein, C3G, via direct SH3 domain binding. Our data show that distinct Cbl-Crkl and Crkl-C3G complexes exist in myeloid cells, suggesting that these complexes may modulate distinct signaling events. Anti-Crkl immunoprecipitations demonstrate that the ITAM-containing gamma subunit of Fc gamma RI is induced to form a complex with the Crkl protein, and Crkl binds to the cytoskeletal protein, Hef-1. The induced association of Crkl with Cbl, Hef-1, and Fc gamma RI gamma after Fc gamma RI activation and the constitutive association between C3G and Crkl provide the first evidence that a Fc gamma RI gamma-Crkl-C3G complex may link ITAM receptors to the activation of Rap1 in myeloid cells.
Download full-text PDF |
Source |
---|
Turk J Biol
November 2021
Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey.
The multifunctional BAG-1 (Bcl-2 athanogene-1) protein promotes breast cancer survival through direct or indirect interaction partners. The number of the interacting partners determines its cellular role in different conditions. As well as interaction partner variability, the amount of BAG-1 protein in the cells could cause dramatic alterations.
View Article and Find Full Text PDFF1000Res
May 2021
Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China.
Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS.
View Article and Find Full Text PDFFront Immunol
September 2021
Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
Centre de Physiopathologie de Toulouse Purpan, INSERM, CNRS, Université de Toulouse, 31024 Toulouse, France;
J Biol Chem
March 2016
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 and. Electronic address:
The EGF receptor can bind seven different agonist ligands. Although each agonist appears to stimulate the same suite of downstream signaling proteins, different agonists are capable of inducing distinct responses in the same cell. To determine the basis for these differences, we used luciferase fragment complementation imaging to monitor the recruitment of Cbl, CrkL, Gab1, Grb2, PI3K, p52 Shc, p66 Shc, and Shp2 to the EGF receptor when stimulated by the seven EGF receptor ligands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!