Central to the pathogenesis of osteoporosis is the ability of estrogen deficiency to increase osteoclast formation by enhancing stromal cell production of the osteoclastogenic cytokine macrophage colony-stimulating factor (M-CSF). We report that stromal cells from ovariectomized mice exhibit increased casein kinase II-dependent phosphorylation of the nuclear protein Egr-1. Phosphorylated Egr-1 binds less avidly to the transcriptional activator Sp-1 and the resulting higher levels of free Sp-1 stimulate transactivation of the M-CSF gene. Estrogen replacement fails to block M-CSF mRNA expression and osteoclast formation in ovariectomized mice lacking Egr-1, confirming the critical role played by this transcription factor in mediating the antiosteoclastogenic effects of estrogen. Thus, by downregulating formation of a novel Egr-1/Sp-1 complex in stromal cells, estrogen deficiency results in enhanced levels of free Sp-1 and increased M-CSF gene expression and osteoclast formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC509135 | PMC |
http://dx.doi.org/10.1172/JCI4561 | DOI Listing |
J Bone Miner Res
January 2025
School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Australia.
Biochim Biophys Acta Mol Basis Dis
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Osteoporosis (OP) is a bone metabolic disease caused by decreased bone mass leading to destruction of bone microstructure. Treatment of OP is characterized by a lifelong nature, causing extreme financial and psychological burdens to patients. Hormonal abnormalities, cellular autophagy, Ferroptosis, and oxidative stress are all part of the intricate and varied pathophysiology of OP.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.
Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).
View Article and Find Full Text PDFBone Res
January 2025
Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, PR China.
Reproductive hormones associated with the hypothalamic-pituitary-gonadal (HPG) axis are closely linked to bone homeostasis. In this study, we demonstrate that Gonadotropin inhibitory hormone (GnIH, one of the key reproductive hormones upstream of the HPG axis) plays an indispensable role in regulating bone homeostasis and maintaining bone mass. We find that deficiency of GnIH or its receptor Gpr147 leads to a significant reduction in bone mineral density (BMD) in mice primarily by enhancement of osteoclast activation in vivo and in vitro.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Myeloproliferative neoplasm-associated myelofibrosis is a clonal stem cell process characterized by pronounced bone marrow fibrosis associated with extramedullary hematopoiesis and splenomegaly. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment leading to bone marrow fibrosis regression. Here we provide an in-depth skeletal characterization of myelofibrosis patients before and after allo-HSCT utilizing clinical high-resolution imaging, laboratory analyses, and bone biopsy studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!