We purified and characterized a novel peptide from the venom of the fish-hunting cone snail Conus striatus that inhibits voltage-gated K+ channels. The peptide, kappaA-conotoxin SIVA, causes characteristic spastic paralytic symptoms when injected into fish, and in frog nerve-muscle preparations exposed to the toxin, repetitive action potentials are seen in response to a single stimulus applied to the motor nerve. Other electrophysiological tests on diverse preparations provide evidence that is consistent with the peptide blocking K+ channels. The peptide has three disulfide bonds; the locations of Cys residues indicate that the spastic peptide may be the first and defining member of a new family of Conus peptides, the kappaA-conotoxins, which are structurally related to, but pharmacologically distinct from, the alphaA-conotoxins. This 30 AA tricyclic toxin has several characteristics not previously observed in Conus peptides. In addition to the distinctive biological and physiological activity, a novel biochemical feature is the unusually long linear N-terminal tail (11 residues) which contains one O-glycosylated serine at position 7. This is the first evidence for O-glycosylation as a posttranslational modification in a biologically active Conus peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi981690a | DOI Listing |
Mar Drugs
January 2025
Laboratorio de Oncología Experimental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de Mexico 14080, Mexico.
Malignant pleural mesothelioma (MPM) is a rare neoplasm with increasing incidence and mortality rates. Although recent advances have improved the overall prognosis, they have not had an important impact on survival of patients with MPM, such that more effective treatments are needed. Some species of marine snails have been demonstrated to be potential sources of novel anticancer molecules.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
Cone snails of the genus have evolved to produce structurally distinct and functionally diverse venom peptides for defensive and predatory purposes. This nature-devised delicacy enlightened drug discovery and for decades, the bioactive cone snail venom peptides, known as conotoxins, have been widely explored for their therapeutic potential, yet we know very little about them. With the augmentation of computational algorithms from the realms of bioinformatics and machine learning, in silico strategies have made substantial contributions to facilitate conotoxin studies although still with certain limitations.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.
Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia. Electronic address:
The α-conotoxins (α-Ctxs) are short, disulfide-rich peptides derived from the venom of the Conus marine snails, primarily acting as antagonists of nicotinic acetylcholine receptors (nAChRs). Specifically, α-Ctx Vc1.1, a 16-amino acid peptide from Conus victoriae, competitively antagonizes non-muscle nAChRs, inhibits nicotine-induced currents in bovine chromaffin cells, and alleviates neuropathic pain in rat models.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4067, Australia.
Conotoxins, isolated from the venom of carnivorous marine snails of the Conus genus, are disulfide-rich peptides and proteins with well-defined three-dimensional structures. Conotoxins' ability to target a wide range of ion channels and receptors, including voltage- and ligand-gated ion channels, G protein-coupled receptors, monoamine transporters, and enzyme, at exquisite potency and selectivity make them valuable research and therapeutic tools. Despite their potentials, Conus venom peptides are present in limited quantities in nature and possess structural complexity that raises significant synthetic challenges for both chemical synthesis and recombinant expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!