Two commercial assays that detect Mycobacterium tuberculosis complex (MTB) in clinical specimens by rRNA target amplification (AMTDII) and ligase chain reaction (LCx) were evaluated. The tests were applied to 457 respiratory (n = 273) and extrapulmonary (n = 184) specimens collected from 357 patients. The results were compared with those of acid-fast staining and culture. The combination of culture and clinical diagnosis was considered to be the "gold standard." Seventy specimens were from patients with pulmonary tuberculosis and 28 specimens were from patients with extrapulmonary tuberculosis. After resolution of discrepant results, the overall sensitivities, specificities, and positive and negative predictive values for respiratory specimens were 92.8, 99.4, 98.5, and 97%, respectively, for AMTDII and 75.7, 98.8, 96.4, and 90.5%, respectively, for LCx. With extrapulmonary specimens, the overall sensitivities, specificities, and positive and negative predictive values were 78.6, 99.3, 95.6, and 96.2%, respectively, for AMTDII and 53.6, 99.3, 93.7, and 92.1%, respectively, for LCx. The level of agreement between AMTDII and LCx assay results was 78.2%. We conclude that although both nucleic acid amplification methods are rapid and specific for the detection of MTB in clinical specimens, AMTDII is significantly more sensitive than LCx with both respiratory (P = 0.005) and extrapulmonary (P = 0.048) specimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC105247PMC
http://dx.doi.org/10.1128/JCM.36.12.3601-3604.1998DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
16
specimens
9
tuberculosis complex
8
extrapulmonary specimens
8
mtb clinical
8
clinical specimens
8
specimens patients
8
sensitivities specificities
8
specificities positive
8
positive negative
8

Similar Publications

Multifunctional Mycobacterial Topoisomerases with Distinctive Features.

ACS Infect Dis

January 2025

Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.

Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.

View Article and Find Full Text PDF

Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.

View Article and Find Full Text PDF

Preclinical model of Mycobacteroides abscessus lung disease by nose-only exposure of mice to bacterial powder aerosol.

Tuberculosis (Edinb)

January 2025

CSIR-Central Drug Research Institute, Lucknow, 226031, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India. Electronic address:

The limitations of existing mouse models of lung infection with Mycobacteroides abscessus impede drug discovery and development. In contrast to current animal models that introduce NTM intravenously or by intranasal/intra-tracheal instillation or via bronchoscopy-guided insufflation, we developed a dry powder inhalation (DPI) of M. abscessus ATCC 19977 that generated paucibacillary lung infection and histopathology in immunocompetent mice.

View Article and Find Full Text PDF

Clinical application of time-of-flight mass spectrometry nucleic acid detection technology in diagnosis of drug-resistant pulmonary tuberculosis.

Diagn Microbiol Infect Dis

January 2025

Henan Provincial Chest Hospital tuberculosis within Six/Critical Illness Area, Henan Infectious Diseases(TB)Clinical Research Center, Zhengzhou, Henan, 450001, PR China. Electronic address:

Purpose: This study aims to evaluate the clinical diagnostic value of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for tuberculosis and drug-resistant tuberculosis.

Patients And Methods: Totally 201 pulmonary tuberculosis patients were recruited retrospectively. All patients underwent smear microscopy, Mycobacterium growth indicator tube (MGIT) 960 culture, loop-mediated isothermal amplification (LAMP) molecular testing, Xpert MTB/RIF (Xpert), and MassARRAY assay which is a MALDI-TOF MS based method.

View Article and Find Full Text PDF

Metabolically Stable Adenylation Inhibitors of Biotin Protein Ligase as Antibacterial Agents.

J Med Chem

January 2025

Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States.

The antibacterial agent Bio-AMS is metabolized in vivo through hydrolysis of the central acyl-sulfamide linker leading to high clearance and release of a moderately cytotoxic metabolite . Herein, we disclose analogues designed to prevent the metabolism of the central acyl-sulfamide moiety through steric hindrance or attenuation of the acyl-sulfamide electrophilicity. was identified as a metabolically stable analogue with a single-digit nanomolar dissociation constant for biotin protein ligase (BPL) and minimum inhibitory concentrations (MICs) against and ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!