Relative contribution of normal and neoplastic cells determines telomerase activity and telomere length in primary cancers of the prostate, colon, and sarcoma.

Clin Cancer Res

James Ewing Laboratory of Developmental Hematopoiesis, Genitourinary Oncology Service, Departments of Surgery and Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

Published: October 1997

Telomerase and telomere length are increasingly investigated as potential diagnostic and prognostic markers in human tumors. Among other factors, telomerase and telomere length may be influenced by the degree of tumor cell content in tumor specimens. We studied telomerase activity and telomere length with concomitant integration of histopathological data to determine whether both were influenced by the amount of tumor cells. We measured telomerase in 153 specimens: in 51 solid tumor blocks; in 51 cryostat sections; and in 51 adjacent normal tissues from patients with sarcoma (n = 10) and colorectal (n = 11) and prostate cancer (n = 30) using the sensitive and rapid detection telomeric repeat amplification protocol assay. Telomere length was determined by telomere restriction fragment Southern blot analysis. From cryostat sections, tumor cell infiltration was assessed. Telomerase activity was detected in all colorectal tumors and sarcomas, as expected. In primary prostate cancer, however, telomerase activity was less frequently observed (14 of 30, 47%). Moreover, a decreased intensity compared to colon cancer and sarcoma was evident (P < 0.001). The median tumor cell infiltration was significantly higher in sarcoma (65%) and colon (30%) compared to prostate cancer (5%; P < 0.001). There was a positive correlation between tumor cell infiltration and telomerase activity (r = 0.89; P < 0.001). Telomere restriction fragments in tumors were shorter compared to the normal tissues with peak differences in colon, sarcoma, and prostate of 1.8, 2.8, and 1 kilobase pairs, respectively (P < 0.002). Our data suggest the presence of a positive correlation between the degree of tumor cell content in human solid tumors and the level of telomerase activity detected. We demonstrated that the amount of tumor cells also affects telomere restriction fragment analysis. Therefore, with the predominance of normal cells in tumor specimens, telomerase activity measured may not reflect the malignant phenotype, and telomere loss may be underestimated. This phenomenon was most evident in prostate cancer. Our results will have implications for the future when telomerase activity and telomere lengths may be used for early screening, diagnosis, and prognosis determinations and when telomerase inhibitors are applied to clinical practice.

Download full-text PDF

Source

Publication Analysis

Top Keywords

telomerase activity
32
telomere length
20
tumor cell
20
prostate cancer
16
telomerase
12
activity telomere
12
telomere restriction
12
cell infiltration
12
telomere
10
tumor
10

Similar Publications

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Detecting IDH and TERTp mutations in diffuse gliomas using H-MRS with attention deep-shallow networks.

Comput Biol Med

January 2025

Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey; Center for Neuroradiological Applications and Research, Acibadem University, Istanbul, Turkey.

Background: Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.

Methods: This study included H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type).

View Article and Find Full Text PDF

Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging.

View Article and Find Full Text PDF

Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) are inherited conditions associated with multisystem manifestations. We describe clinical and functional characterisation of a novel TERT variant. Whole-genome sequencing was performed along with single length analysis ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!