Count-rate statistics of the gamma camera.

Phys Med Biol

Forschungsgruppe Medizinische Physik, Zentrum Radiologie, Abteilung Nuklearmedizin, Universitätsklinikum Göttingen, Germany.

Published: October 1998

The temporal distribution of decay events recorded by a gamma camera in 'list mode' differs from the Poisson distribution because of dead-time effects. We propose a new model for the dead-time behaviour of a gamma camera. The most important feature of our model is that the loss of events occurs in pairs or higher multiples due to the so-called 'pile-up' effect. We analyse the consequences of pile-up for the temporal distribution of events recorded by a gamma camera. The probability distribution for the time intervals between events recorded by the camera is calculated from first principles. We construct estimators for the parameter of the new distribution. We distinguish between the estimation of the total count rate and the estimation of a certain subset of the total count rate. Computer simulation confirms that our estimators are less influenced by dead-time effects than the standard estimator.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0031-9155/43/10/019DOI Listing

Publication Analysis

Top Keywords

gamma camera
16
events recorded
12
temporal distribution
8
recorded gamma
8
dead-time effects
8
total count
8
count rate
8
camera
5
distribution
5
count-rate statistics
4

Similar Publications

CoReSi: a GPU-based software for Compton camera reconstruction and simulation in collimator-free SPECT.

Phys Med Biol

January 2025

CREATIS, INSA de Lyon, Bâtiment Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne, 69621 Cedex , FRANCE.

Compton cameras are imaging devices that may improve observation of sources of γ photons. We present CoReSi, a Compton Reconstruction and Simulation software implemented in Python and powered by PyTorch to leverage multi-threading and for easy interfacing with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and for near-field experiments where the images are reconstructed in 3D.

View Article and Find Full Text PDF

Aims: While most clinical guidelines recommend using a 64-projection view technique, some protocols do not specify a preference between 32-projection and 64-projection methods for conducting myocardial perfusion scintigraphy (MPS), which shows the lack of consensus in this matter. Nevertheless, these guidelines and protocols have not provided us with compelling evidence to support why the 64-projection technique is usually chosen. Thus, we aimed to determine if there is a significant difference between them in the assessment of cardiac perfusion and functional indices.

View Article and Find Full Text PDF

This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT.

View Article and Find Full Text PDF

GFR Estimation and Correlation for Oncology Patients by Two Methods, Gates Method and Dual Time Point Plasma Sampling Method.

Indian J Nucl Med

November 2024

Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital and Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.

Background: With the increasing number of oncology cases and a parallel surge in chemotherapeutic drugs for treatment, the treating physicians conducts nephrotoxicity evaluation to provide a personalized dosing strategy. Of the various tests available, glomerular filtration rate (GFR) under gamma camera with help of Gates method has gained importance, being a good index of overall kidney functions. In addition to this, there has been an alternate and old method for GFR estimation: plasma sampling.

View Article and Find Full Text PDF

Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.

Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!