The contribution of metabolic bicarbonate to cytosolic pH (pHcyto) regulation was studied on isolated perfused rat liver using phosphorus-31 NMR spectroscopy. Removal of external HCO3- decreased proton efflux from 18.6+/-5.0 to 1.64+/-0.29 micromol/min per g liver wet weight (w.w.) and pHcyto from 7.17+/-0.06 to 6.87+/-0.06. In the nominal absence of bicarbonate, inhibition of carbonic anhydrase by acetazolamide induced a further decrease of proton efflux of 0.69+/-0.26 micromol/min per g liver w.w. reflecting a reduction in metabolic CO2 hydration, and hence a decrease of H+ and HCO3- supplies. Even though 27% of the proton efflux was amiloride-sensitive under bicarbonate-free conditions, amiloride did not change pHcyto, revealing the contribution of additional regulatory processes. Indeed, pH regulation was affected by the combined use of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and amiloride since pHcyto decreased by 0.16+/-0.05 and proton efflux by 0.60+/-0.14 micromol/min per g liver w.w. The data suggest that amiloride-sensitive or SITS-sensitive transport activities could achieve, by themselves, pHcyto regulation. The involvement of two mechanisms, most likely Na+/H+ antiport and Na+:HCO3 symport, was confirmed in the whole organ under intracellular and extracellular acidosis. The evidence of Na-dependent transport of HCO3- in the absence of exogenous bicarbonate implies that the amount of metabolic bicarbonate is sufficient to effectively participate to pHcyto regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0304-4165(98)00075-0DOI Listing

Publication Analysis

Top Keywords

proton efflux
16
phcyto regulation
12
micromol/min liver
12
perfused rat
8
rat liver
8
metabolic bicarbonate
8
phcyto
6
liver
5
bicarbonate
5
cytosolic regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!