The human multidrug resistance protein (MRP) gene encodes a membrane protein involved in the ATP-dependent transport of hydrophobic compounds. We previously isolated a canalicular multispecific organic anion transporter, cMOAT1/MRP2, that belongs to the ATP binding cassette (ABC) superfamily, which is specifically expressed in liver, and cMOAT1/MRP2 is responsible for the defects in hyperbilirubinemia II/Dubin-Johnson syndrome. In this study, we isolated a new cDNA of the ABC superfamily designated cMOAT2/MRP3 that is homologous to human MRP1 and cMOAT1/MRP2: cMOAT2/MRP3 is 56% identical to MRP1 and 45% identical to cMOAT1/MRP2, respectively. Fluorescence in situ hybridization demonstrated the chromosomal locus of this gene on chromosome 17q22. The human cMOAT2 cDNA hybridized to a 6.5-kb mRNA that was mainly expressed in liver and to a lesser extent in colon, small intestine, and prostate. The cMOAT2/MRP3 gene was not overexpressed in cisplatin-resistant cell lines with increased ATP-dependent transport of cisplatin over their parental counterparts derived from human head and neck cancer and human prostatic cancer cell lines. The human cMOAT2/MRP3, a novel member of the ABC superfamily, may function as a membrane transporter in liver, colon, and prostate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1998.9546 | DOI Listing |
Mol Divers
January 2025
Data Science, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
The ATP-binding cassette transporter superfamily plays a pivotal role in cellular detoxification and drug efflux. ATP-binding cassette subfamily G member 2 (ABCG2) referred to as the Breast cancer resistance protein has emerged as a key member involved in multidrug resistance displayed by cancer cells. Understanding the molecular basis of substrate and inhibitor recognition, and binding within the transmembrane domain of ABCG2 is crucial for the development of effective therapeutic strategies.
View Article and Find Full Text PDFLife Sci
January 2025
Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt. Electronic address:
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
November 2024
Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden. Electronic address:
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis.
View Article and Find Full Text PDFEvol Bioinform Online
November 2024
Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh.
J Drug Target
November 2024
School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan, R.O.C.
Drug efflux transporters, especially those belonging to the ATP-binding cassette (ABC) transporter superfamily, play a crucial role in various drug resistance issues, including multidrug resistance (MDR) in cancer and treatment-resistant depression (TRD) in individuals with major depressive disorder. Key transporters in this context include P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP). This study aimed to investigate the modulatory effects of polyoxyethylene (20) sorbitan monolaurate (Tween 20) on these efflux transporters and to evaluate its potential for overcoming drug resistance in two models: an cancer MDR model and an TRD model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!