Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human thymidylate synthase (TS) contains three highly conserved residues Ile-108, Leu-221, and Phe-225 that have been suggested to be important for cofactor and antifolate binding. To elucidate the role of these residues and generate drug-resistant human TS mutants, 14 variants with multiple substitutions of these three hydrophobic residues were created by site-directed mutagenesis and transfected into mouse TS-negative cells for complementation assays and cytotoxicity studies, and the mutant proteins expressed and characterized. The I108A mutant confers resistance to raltitrexed and Thymitaq with respective IC50 values 54- and 80-fold greater than wild-type but less resistance to BW1843U89 (6-fold). The F225W mutant displays resistance to BW1843U89 (17-fold increase in IC50 values), but no resistance to raltitrexed and Thymitaq. It also confers 8-fold resistance to fluorodeoxyuridine. Both the kinetic characterization of the altered enzymes and formation of antifolate-resistant colonies in mouse bone marrow cells that express mutant TS are in accord with the IC50 values for cytotoxicity noted above. The human TS mutants (I108A and F225W), by virtue of their desirable properties, including good catalytic function and resistance to antifolate TS inhibitors, confirm the importance of amino acid residues Ile-108 and Phe-225 in the binding of folate and its analogues. These novel mutants may be useful for gene transfer experiments to protect hematopoietic progenitor cells from the toxic effects of these drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.273.47.31209 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!