Generation of a radial-like glial cell line.

J Neurobiol

Department of Pharmacology, NYU Medical Center, New York 10016, USA.

Published: November 1998

Rat C6 glioma is a cell line that has been used extensively as a model of astroglia. Although this cell line retains many of the properties of developing glia, it does not resemble morphologically the specialized form of glia found embryonically, the radial glia. In experiments designed to study a mutant form of receptor protein tyrosine phosphatase beta, we isolated a subclone of C6 called C6-R which, like radial glia, assumes a highly polarized radial-like morphology in culture. C6-R cells and, to a somewhat lesser extent, C6 cells, express cytoskeletal proteins found in developing astroglia including glial fibrillary acidic protein and RC1. As seen with radial glia, cerebellar granule cell bodies and neurites migrated along radial processes of C6-R cells in culture. Morphological analysis of dye-labeled cells injected into the developing forebrain revealed that a large fraction (approximately 60%) of the C6-R cells in the cortex assumed a radial orientation and about half of these (approximately 30%) made contact with the pial surface. In contrast, the parental C6 cells generally formed aggregates and only displayed a radial alignment when associated with blood vessels. These results suggest that we have generated a stable cell line from C6 glioma which has adopted certain key features of radial glia, including the ability to promote neuronal migration in culture and integrate radially in vivo in response to local cues. This cell line may be particularly useful for studying receptors on radial glia that mediate neuronal migration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1097-4695(19981105)37:2<291::aid-neu8>3.0.co;2-fDOI Listing

Publication Analysis

Top Keywords

radial glia
20
c6-r cells
12
radial
8
neuronal migration
8
glia
7
cell
6
cells
6
generation radial-like
4
radial-like glial
4
glial cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!