We have previously suggested that ozone (O3)-induced pain-related symptoms and inhibition of maximal inspiration are due to stimulation of airway C fibers (M. J. Hazucha, D. V. Bates, and P. A. Bromberg. J. Appl. Physiol. 67: 1535-1541, 1989). If this were so, pain suppression or inhibition by opioid-receptor agonists should partially or fully reverse O3-induced symptomatic and lung functional responses. The objectives of this study were to determine whether O3-induced pain limits maximal inspiration and whether endogenous opioids contribute to modulation of the effects of inhaled O3 on lung function. The participants in this double-blind crossover study were healthy volunteers (18-59 yr) known to be "weak" (WR; n = 20) and "strong" O3 responders (SR; n = 42). They underwent either two 2-h exposures to air or two 2-h exposures to 0. 42 parts/million O3 with moderate intermittent exercise. Immediately after post-O3 spirometry, the WR were randomly given either naloxone (0.15 mg/kg iv) or saline, whereas SR randomly received either sufentanil (0.2 microgram/kg iv) or saline. O3 exposure significantly (P < 0.001) impaired lung function. In SR, sufentanil rapidly, although not completely, reversed both the chest pain and spirometric effects (forced expiratory volume in 1 s; P < 0.0001) compared with saline. Immediate postexposure administration of saline or naloxone had no significant effect on WR. Plasma beta-endorphin levels were not related to an individual's O3 responsiveness. Cutaneous pain variables showed a nonsignificant weak association with O3 responsiveness. These observations demonstrate that nociceptive mechanisms play a key role in modulating O3-induced inhibition of inspiration but not in causing lack of spirometric response to O3 exposure in WR.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jappl.1998.85.5.1863DOI Listing

Publication Analysis

Top Keywords

lung function
12
nociceptive mechanisms
8
maximal inspiration
8
2-h exposures
8
mechanisms modulate
4
modulate ozone-induced
4
ozone-induced human
4
lung
4
human lung
4
function decrements
4

Similar Publications

Progress report on multiple endocrine neoplasia type 1.

Fam Cancer

January 2025

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is an autosomal dominant disorder caused by a germline pathogenic variant in the MEN1 tumor suppressor gene. Patients with MEN1 have a high risk for primary hyperparathyroidism (PHPT) with a penetrance of nearly 100%, pituitary adenomas (PitAd) in 40% of patients, and neuroendocrine neoplasms (NEN) of the pancreas (40% of patients), duodenum, lung, and thymus. Increased MEN1-related mortality is mainly related to duodenal-pancreatic and thymic NEN.

View Article and Find Full Text PDF

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

Background: Pre-cancer onset of cachexia raises uncertainties regarding the optimal timing for early intervention in lung cancer patients. We aimed to examine changes in physical function, nutritional status, and cachexia incidence in patients with lung cancer from the initial visit to treatment initiation and determine the effect of these changes on lung cancer treatment.

Methods: This single-center retrospective cohort study enrolled patients suspected of having advanced lung cancer who visited Kansai Medical University Hospital between January and February 2023 and were definitely diagnosed with the disease.

View Article and Find Full Text PDF

The Valsalva manoeuvre is widely recognised for its effectiveness in reverting supra-ventricular tachycardia (SVT) in patients with good coordination. However, this is not applicable in sedated ventilated patients and there is a dearth of literature regarding the application of Valsalva in unconscious patients on mechanical ventilation. The authors, for the first time, present a novel non-pharmacological method to treat SVT in critically ill patients on mechanical ventilation, employing the high positive end-expiratory pressure (PEEP) technique.

View Article and Find Full Text PDF

Background: Despite the physiological advantages of positive end-expiratory pressure (PEEP), its optimal utilization during one-lung ventilation (OLV) remains uncertain. We aimed to investigate whether individualized PEEP titration by lung compliance is associated with a reduced risk of postoperative pulmonary complications during OLV.

Methods: We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials until April 1, 2024, to identify published randomized controlled trials that compared individualized PEEP titration by lung compliance with fixed PEEP during OLV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!