The growth mitogenic properties of IGF-I on tissues of the gastrointestinal tract are well established; however, IGF effects on enzyme maturation are less clear. To test whether IGF-I peptide administration stimulates disaccharidase activity, we administered IGF-I or the more potent analog, long [Arg3]IGF-I, at doses ranging between 2 and 12.5 micrograms g-1 d-1 to suckling Wistar rat pups by either continuous s.c. infusion or by three times daily orogastric gavage. Peptides were administered for approximately 6 d starting on d 6 or 12 postpartum with six to nine rats per group. The results of the study demonstrated that systemically but not orally administered IGF-I stimulated duodenal wet tissue weight (up to 85%) and length (up to 36%). Enzyme maturation was assessed by measuring disaccharidase biochemically in tissue homogenates. Enzyme activity was also localized histocytochemically in cryostat-sectioned duodenum. After systemic infusion of IGF-I, intestinal lactase activity increased proportional to mucosal mass in both age groups. Systemic infusion of the more potent analog, long [Arg3]IGF-I, precociously induced the decline in lactase activity and accelerated the appearance of sucrase activity in the rat pups infused during the later suckling period. These findings indicate that enzyme maturation can be accelerated by systemically derived IGF-I peptides. Orogastrically IGF-I peptides, delivered at pharmacologic doses, did not affect intestinal growth or digestive enzyme maturation in suckling rat pups treated between 6 and 18 d postpartum, indicating the efficacy of IGF-I peptides may depend on the route of delivery and postnatal age of the recipient.

Download full-text PDF

Source
http://dx.doi.org/10.1203/00006450-199811000-00008DOI Listing

Publication Analysis

Top Keywords

enzyme maturation
16
long [arg3]igf-i
12
rat pups
12
igf-i peptides
12
igf-i
9
disaccharidase activity
8
age groups
8
administered igf-i
8
potent analog
8
analog long
8

Similar Publications

Carbonic anhydrases (CAs) are ubiquitous enzymes that catalyze reversibly both the hydration and dehydration reactions of CO and HCO-, respectively. Higher plants contain many different isoforms of CAs that can be classified into α-, β- and γ-type subfamilies. β-type CAs play a key role in the CO-concentrating mechanism, thereby contributing to efficient photosynthesis in the C plants in addition to many other biochemical reactions in plant metabolism.

View Article and Find Full Text PDF

Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction.

Nat Commun

January 2025

Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.

Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.

View Article and Find Full Text PDF

The α- to γ-enolase switch: The role and regulation of γ-enolase during oligodendrocyte differentiation.

Int J Biol Macromol

January 2025

Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia. Electronic address:

The glycolytic enzyme γ-enolase is a highly specific neuronal marker that is known to replace ubiquitously expressed α-enolase in the brain. Moreover, γ-enolase has been shown to exert neurotrophic activity, which is regulated by cathepsin X, a lysosomal peptidase. This study investigates the role of γ-enolase and its regulation by cathepsin X during the differentiation of oligodendrocytes, which are essential for normal brain function.

View Article and Find Full Text PDF

Atgl-dependent adipocyte lipolysis promotes lipodystrophy and restrains fibrogenic responses during skin fibrosis.

J Invest Dermatol

January 2025

Dept. of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA; Dept. of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA. Electronic address:

During skin fibrosis, extracellular matrix (ECM) proteins are overproduced, and resident lipid-filled, mature dermal adipocytes are depleted in both human disease and mouse models. However, the mechanisms by which the reduction in lipid-filled adipocytes occurs during fibrosis are not well understood. Here, we identify that adipocyte lipolysis via the rate limiting enzyme, adipocyte triglyceride lipase (Atgl), is required for loss of adipose tissue during skin fibrosis in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!