We present data on the relationship between the rate of transposition and copy number in the genome for the copia and Doc retrotransposons of Drosophila melanogaster. copia and Doc transposition rates were directly measured in sublines of the isogenic 2b line using individual males or females, respectively, with a range of copia copy numbers from 49 to 103 and Doc copy numbers from 112 to 235 per genome. Transposition rates varied from 3 x 10(-4) to 2 x 10(-2) for copia and from 2 x 10(-4) to 2 x 10(-3) for Doc. A positive relationship between transposition rate and copy number was found both for copia and for Doc when the data were analysed across all the 2b individuals; no significant correlation was found when the data were analysed across the subline means for both retrotransposons tested. Overall, correlation between copia and Doc transposition rate and their copy number in the genome, if any, was not negative, which would be expected if transposable elements (TEs) self-regulate their copy number. Thus, for copia and Doc no evidence for self-regulation was provided, and at least for these two TEs this hypothesis is not favoured for explaining the maintenance of the stable copy number that is characteristic for natural populations. The transposition rate of copia was measured twice, and a strong positive correlation between copy number and transposition rate both across individuals and subline means was found in 1994, while in 1995 no correlation was found. This fact is in agreement with the hypothesis that a positive correlation between the rate of transposition and TE copy number may be a default starting point for future host-TE coevolution.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0016672398003358DOI Listing

Publication Analysis

Top Keywords

copy number
32
copia doc
24
transposition rate
16
rate transposition
12
number copia
12
copy
10
transposition
9
copia
9
relationship rate
8
number
8

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Background: Autosomal Dominant Polycystic Kidney Disease (ADPKD) represents the most common monogenic cause of kidney failure. While identifying genetic variants predicts disease progression, characterization of recently described ADPKD-like variants is limited. We explored disease progression and genetic spectrum of genetically-confirmed ADPKD families with PKD1 and non-PKD1 variants.

View Article and Find Full Text PDF

Background: The risk of developing advanced neoplasia (AN; colorectal cancer and/or high-grade dysplasia) in ulcerative colitis (UC) patients with a low-grade dysplasia (LGD) lesion is variable and difficult to predict. This is a major challenge for effective clinical management.

Objective: We aimed to provide accurate AN risk stratification in UC patients with LGD.

View Article and Find Full Text PDF

Advancing Cancer Diagnosis and Treatment: Integrating Molecular Biomarkers and Emerging Technologies.

Biomed J

January 2025

Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA. Electronic address:

Cancer biomarkers can be derived from tumor cells or neighboring cells within the tumor microenvironment. Over the past few decades, various molecular markers, including DNA (mutations, copy number variations), RNA (mRNA, microRNA, circular RNA), proteins, and metabolites, have been identified with the aid of rapidly evolving technologies. Some of these markers have demonstrated potential clinical utility, while others have provided new insights into the deregulation of normal molecular and cellular processes that lead to tumorigenesis.

View Article and Find Full Text PDF

One of the key events in DNA damage response (DDR) is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs), required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles and gluconeogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!