The degree to which osmotic stress changes the volume of mammalian central neurons has not previously been determined. We isolated CA1 pyramidal cells and measured cell volume in four different ways. Extracellular osmolarity (pio) was lowered by omitting varying amounts of NaCl and raised by adding mannitol; the extremes of pio tested ranged from 134 to 396 mosm/kg. When pio was reduced, cell swelling varied widely. We distinguished three types of cells according to their response: "yielding cells" whose volume began to increase immediately; "delayed response cells" which swelled after a latent period of 2 min or more; and "resistant cells" whose volume did not change during exposure to hypo-osmotic solution. When pio was raised, most cells shrank slowly, reaching minimal volume in 15-20 min. We observed neither a regulatory volume decrease nor an increase. We conclude that the water permeability of the membrane of hippocampal CA1 pyramidal neurons is low compared to that of other cell types. The mechanical support of the plasma membrane given by the cytoskeleton may contribute to the resistance to swelling and protect neurons against swelling-induced damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s004240050734DOI Listing

Publication Analysis

Top Keywords

osmotic stress
8
ca1 pyramidal
8
cells" volume
8
volume
7
volume changes
4
changes induced
4
induced osmotic
4
stress freshly
4
freshly isolated
4
isolated rat
4

Similar Publications

The exploration of our solar system for microbial extraterrestrial life is the primary goal of several space agencies. Mars has attracted substantial attention owing to its Earth-like geological history and potential niches for microbial life. This study evaluated the suitability of the polyextremophilic fungal strain LaBioMMi 1217 as a model eukaryote for astrobiology.

View Article and Find Full Text PDF

Phenotypic consequences of logarithmic signaling in MAPK stress response.

iScience

January 2025

Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.

How cells respond to dynamic environmental changes is crucial for understanding fundamental biological processes and cell physiology. In this study, we developed an experimental and quantitative analytical framework to explore how dynamic stress gradients that change over time regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that gradual stress conditions substantially enhance cell growth compared to conventional acute stress.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the impact of diabetes on mortality and adverse outcomes in COVID-19 patients and to analyse the associated risk factors.

Methods: This is a retrospective cohort study in 500 hospitalized patients with COVID-19 infection (214 with diabetes and 286 without diabetes) admitted to a tertiary hospital in China from December 2022 to February 2023. Demographic information, clinical characteristics and outcomes were collected.

View Article and Find Full Text PDF

Humboldt squid (Dosidicus gigas) is the most abundant cephalopod in the fishing industry, and its high nutritional and organoleptic properties make it a go-to food product for consumers. Therefore, developing new processing techniques seems imperative to minimize quality deterioration and provide products with appropriate characteristics. The study aimed to determine the effect of high-pressure impregnation (HPI) pretreatment on hot air-drying kinetics and the quality of Humboldt squid slices.

View Article and Find Full Text PDF

Role of autophagy in plant growth and adaptation to salt stress.

Planta

January 2025

Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!