The transmembrane sector of sarcoplasmic reticulum Ca2+-ATPase comprises ten putative transmembrane spans (M1-M10) in current topology models. We report here the structure and properties of three synthetic peptides with a single Trp representing the M6 and M7 regions implicated in Ca2+ binding: peptide M6 (amino acid residues 785-810), peptide M7-L (amino acid residues 808-847) corresponding to loop 6-7 and the majority of span M7, and peptide M7-S (amino acid residues 818-847) which contains a shorter version of loop 6-7 than M7-L. After uptake of the peptides in the hydrophobic environment of dodecyl maltoside micelles, the peptides gain a significant amount of secondary structure, as indicated by their CD spectra. However, the alpha-helical content of M6 is lower than would be expected for a classical transmembrane segment. For M7-L peptide, the L6-7 loop is subject to specific proteolytic cleavage by proteinase K, as in intact Ca2+-ATPase. The formation of the peptide-detergent complexes was followed from the resulting fluorescence intensity changes, either enhancement using n-dodecyl beta-D-maltoside or quenching using the recently introduced brominated analog of n-dodecyl beta-D-maltoside: 7,8-dibromododecyl beta-maltoside [de Foresta, B., Legros, N., Plusquellec, D., le Maire, M. & Champeil, P. (1996) Eur J. Biochem. 241, 343-354]. Our results indicate that M7-L and M7-S are completely taken up by the detergent micelles. In contrast, the M6 peptide, which is highly water soluble, is more loosely associated with the detergent, as is also demonstrated by size-exclusion chromatography. The location of Trp in micelles was evaluated from the quenching observed in mixed micelles of n-dodecyl beta-D-maltoside/7,8-dibromododecyl beta-maltoside, using tryptophan octyl ester and solubilized Ca2+-ATPase as reference compounds. We conclude that W832 in M7 appears to be located near the surface of the micelle, in agreement with its membrane interfacial localization predicted in most Ca2+-ATPase topology models. In contrast, our data suggest that W794 in M6 has a deeper insertion in the micelle although not to the extent predicted by current models of Ca2+-ATPase and the rather short alpha-helix span of M6 may lead to exposure of a significant part of the C-terminal of this peptide to the micelle surface. The results are discussed in relation to the proposed roles of these membrane segments in active transport of Ca2+ ions, in particular, the demonstration that M6 does not behave as a classical transmembrane helix may be correlated with the evidence, from site-directed mutagenesis, that this transmembrane segment should be essential in Ca2+ binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1327.1998.2570216.x | DOI Listing |
Nanotechnology
January 2025
Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.
View Article and Find Full Text PDFPLoS Biol
January 2025
Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.
Antibodies are extensively used in biomedical research, clinical fields, and disease treatment. However, to enhance the reproducibility and reliability of antibody-based experiments, it is crucial to have a detailed understanding of the antibody's target specificity and epitope. In this study, we developed a high-throughput and precise epitope analysis method, DECODE (Decoding Epitope Composition by Optimized-mRNA-display, Data analysis, and Expression sequencing).
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343.
Eukaryotic genome size varies considerably, even among closely related species. The causes of this variation are unclear, but weak selection against supposedly costly "extra" genomic sequences has been central to the debate for over 50 years. The mutational hazard hypothesis, which focuses on the increased mutation rate to null alleles in superfluous sequences, is particularly influential, though challenging to test.
View Article and Find Full Text PDFJ Pharm Pharmacol
January 2025
Department of Cell Biology, School of Life Sciences, Central South University; Changsha, Hunan, 410013, P.R. China.
Objectives: Pancreatic cancer, a highly invasive and prognostically unfavorable malignant tumor, consistently exhibits resistance to conventional chemotherapy, leading to substantial side effects and diminished patient quality of life. This highlights the critical need for the discovery of novel, effective, and safe chemotherapy drugs. This study aimed to explore bioactive compounds, particularly natural products, as an alternative for JAK2 protein inhibitor in cancer treatment.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Research and Innovation, MATIS, Reykjavk, Iceland.
A novel bacterium, designated 19SA41, was isolated from the air of the Icelandic volcanic island Surtsey. Cells of strain 19SA41 are Gram-stain-negative, strictly aerobic, non-motile rods and form pale yellow-pigmented colonies. The strain grows at 4-30 °C (optimum, 22 °C), at pH 6-10 (optimum, pH 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!