Purpose: RBE-LET relationships for cell inactivation and hprt mutation in V79 cells have been studied with mono-energetic low-energy proton beams at the radiobiological facility of the INFN-Laboratori Nazionali di Legnaro (LNL), Padova, Italy.

Materials And Methods: V79 cells were irradiated in mono-layer on mylar coated stainless steel petri dishes, in air. Inactivation data were obtained at 7.7, 34.6 and 37.8 keV/microm and hprt mutation was studied at 7 7 and 37.8 keV/microm. Additional data were also collected for both the end points with the proton LET already considered in our previous publications, namely 11.0, 20.0 and 30.5 keV/microm.

Results: A maximum in the RBE-LET relationship for cell inactivation was found at around 31 keV/microm, while the RBE for mutation induction increased continuously with LET.

Conclusions: The proton RBE-LET relationship for cell inactivation is shifted to lower LET values compared with that for heavier ions. For mutation induction, protons of LET equal to 7.7keV/microm gave an RBE value comparable with that obtained by helium ions of about 20 keV/microm. Mutagenicity and lethality caused by protons at low doses in the LET range 7.7-31 keV/microm were proportional, while the data at 37.8 keV/microm suggest that this may not hold at higher LET values.

Download full-text PDF

Source
http://dx.doi.org/10.1080/095530098141375DOI Listing

Publication Analysis

Top Keywords

cell inactivation
16
v79 cells
12
378 kev/microm
12
rbe-let relationships
8
relationships cell
8
hprt mutation
8
rbe-let relationship
8
relationship cell
8
mutation induction
8
kev/microm
6

Similar Publications

Bacterial colonisation in hypertrophic scars (HSs) has been reported, yet the precise mechanism of their contribution to scar formation remains elusive. To address this, we examined HS and normal skin (NS) tissues through Gram staining and immunofluorescence. We co-cultured fibroblasts with heat-inactivated Staphylococcus aureus (S.

View Article and Find Full Text PDF

Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Introduction: Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, with a low five-year survival rate of less than 10%. Transforming growth factor β regulator 4 (TBRG4) is differentially expressed in PC tissues, but its specific functions and regulatory role in PC have not been clarified.

Methods: TBRG4 mRNA expression in PC cells was measured by qRT-PCR.

View Article and Find Full Text PDF

Mercury toxicity resulting from enzyme alterations- minireview.

Biometals

January 2025

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.

Mercury is widely known for its detrimental effects on living organisms, whether in its elemental or bonded states. Recent comparative studies have shed light on the biochemical implications of mercury ingestion, both in low, persistent concentrations and in elevated acute dosages. Studies have presented models that elucidate how mercury disrupts healthy cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!