Objective: Fibrinogen is an independent risk factor for cardiovascular disease. This study has investigated the role of intracellular Ca2+ ([Ca2+]i) and tyrosine phosphorylation in the attachment of human and rat-derived cultured vascular smooth muscle cells to fibrinogen.
Methods: Cells were cultured from human saphenous vein segments (HVSMC) and from an established rat aortic cell line (A7r5). [Ca2+]i was measured using fura-2 and adhesion was studied using pre-coated 96 well polystyrene plates.
Results: Fibrinogen increased [Ca2+]i in both cell types. In A7r5 cells fibrinogen-induced increases in [Ca2+]i were partially inhibited by a peptide containing the amino acid sequence Arg-Gly-Asp (RGD) which interferes with binding to integrins. In contrast RGD increased [Ca2+]i in HVSMC, but did not inhibit responses to fibrinogen. Ni2+, an inorganic calcium channel blocker largely abolished the rise in [Ca2+]i, but blockers of voltage-operated calcium channels failed to affect [Ca2+]i responses to fibrinogen in either cell type. Genistein, an inhibitor of tyrosine kinase inhibited fibrinogen-induced rises in [Ca2+]i, while daidzein, an inactive analogue, was without effect. Adhesion of cells to fibrinogen was concentration- and time-dependent. Cell adhesion to fibrinogen was partially inhibited by RGD peptide in both cell types. Adhesion of cell to fibrinogen was inhibited by chelation of [Ca2+]i with BAPTA-AM, inhibition of Ca2+ entry by Ni2+, and inhibition of tyrosine kinases by genistein, but heparin had no effect on adhesion.
Conclusions: Vascular smooth muscle cells attach to fibrinogen in part through RGD-type interactions. Activation of tyrosine kinase(s) and a subsequent rise in [Ca2+]i appear to be important signals mediating the response to fibrinogen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6363(98)00079-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!