The Escherichia coli heat-labile enterotoxin (LT) is a very potent mucosal immunogen. LT also has strong adjuvant activity towards coadministered unrelated antigens and is therefore of potential interest for development of mucosal vaccines. However, despite the great demand for such mucosal vaccines, the use of LT holotoxin as an adjuvant is essentially precluded by its toxicity. LT is composed of an A subunit, carrying the toxic ADP-ribosylation activity, and a pentamer of identical B subunits, which mediates binding to ganglioside GM1, the cellular receptor for the toxin. In this paper, we demonstrate that recombinant enzymatically inactive variants of LT, including the LTB pentamer by itself, retain the immunoadjuvant activity of LT holotoxin in a murine influenza model. Mice were immunized intranasally (i.n.) with influenza virus subunit antigen, consisting mostly of the isolated surface glycoprotein hemagglutinin (HA), supplemented with either recombinant LTB (rLTB), a nontoxic LT mutant (E112K, with a Glu112-->Lys substitution in the A subunit), or LT holotoxin, and the induction of systemic IgG and local S-IgA responses was evaluated by direct enzyme-linked immunosorbent assay (ELISA). Immunization with subunit antigen alone resulted in a poor systemic IgG response and no detectable S-IgA. However, supplementation of the antigen with E112K or rLTB resulted in a substantial stimulation of the serum IgG level and in induction of a strong S-IgA response in the nasal cavity. The adjuvant activity of E112K or rLTB under these conditions was essentially the same as that of the LT holotoxin. The present results demonstrate that nontoxic variants of LT, rLTB in particular, represent promising immunoadjuvants for potential application in an i.n. influenza virus subunit vaccine. Nontoxic LT variants may also be used in i.n. vaccine formulations directed against other mucosal pathogens. In this respect, it is of interest that LT(B)-stimulated antibody responses after i.n. immunization were also observed at distant mucosal sites, including the urogenital system. This, in principle, opens the possibility to develop i.n. vaccines against sexually transmitted infectious diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0264-410x(98)00076-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!