AI Article Synopsis

  • Studied estrogen receptors ER alpha and ER beta to explore their responses to estrogen and antiestrogen ligands.
  • ER beta's transcriptional activity varies significantly based on cell type and ligand, showing some responsiveness to estrogens but less than ER alpha, and no agonism with certain antiestrogens.
  • Modifying the A/B domain of ER beta can enhance its function and even allow it to react to antiestrogens, suggesting that the amino-terminal differences between ER alpha and ER beta play a critical role in their distinct transcriptional activities and ligand interactions.

Article Abstract

We have studied the two estrogen receptor (ER) subtypes, ER alpha and ER beta, and chimeric constructs with ER alpha and ER beta to examine the bioactivities of these receptors and their responses to estrogen and antiestrogen ligands. Transcriptional activity of ER beta is highly dependent on cell/promoter context and on the nature of the ligand. ER beta activated significant levels of transcription in response to estrogens in certain cell types, but showed only moderate activity compared with ER alpha in others. Antiestrogens such as tamoxifen and 2-phenylbenzofuran, which show some agonistic activity with ER alpha, exhibit no agonistic activity with ER beta. Alteration of the amino-terminal A/B receptor domain can result in a dramatic change in cell type- and ligand-specific transcriptional activity of ER beta. Upon replacing the A/B domain of ER beta with the A/B domain of ER alpha, this receptor chimera not only exhibits an improved transcriptional response to estrogens, but also is now able to activate transcription upon treatment with these antiestrogens. As antiestrogen agonism was lacking in ER beta and the ER beta/alpha chimera containing the amino-terminal A/B domain of ER beta fused to domains C through F of ER alpha, but was restored in an ER alpha/beta chimera containing the A/B domain of ER alpha, antiestrogen agonism was shown to depend on the A/B domain (activation function-1-containing region) of ER alpha. Together, these results indicate that the differences in the amino-terminal regions of ER alpha and ER beta contribute to the cell- and promoter-specific differences in transcriptional activity of these receptors, and their ability to respond to different ligands, thus providing a mechanism for differentially regulated transcription by these two ERs.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.139.11.6298DOI Listing

Publication Analysis

Top Keywords

a/b domain
20
beta
13
alpha beta
12
transcriptional activity
12
activity beta
12
alpha
10
estrogen receptor
8
alpha receptor
8
response estrogens
8
agonistic activity
8

Similar Publications

Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.

View Article and Find Full Text PDF

Diabetes increases the risk of dementia, and insulin resistance (IR) has emerged as a potential unifying feature. Here, we review published findings over the past 2 decades on the relation of diabetes and IR to brain health, including those related to cognition and neuropathology, in the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study (ROS/MAP/MARS), three harmonised cohort studies of ageing and dementia at the Rush Alzheimer's Disease Center (RADC). A wide range of participant data, including information on medical conditions such as diabetes and neuropsychological tests, as well as other clinical and laboratory-based data collected annually.

View Article and Find Full Text PDF

Research Progress on Gene Regulation of Plant Floral Organogenesis.

Genes (Basel)

January 2025

National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process.

View Article and Find Full Text PDF

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!