Type II (non-insulin-dependent) diabetes mellitus is associated with increased blood concentrations of markers of the acute-phase response, including sialic acid, alpha-1 acid glycoprotein, serum amyloid A, C-reactive protein and cortisol, and the main cytokine mediator of the response, interleukin-6. The dyslipidaemia common in Type II diabetes (hypertriglyceridaemia and low serum levels of HDL cholesterol) is also a feature of natural and experimental acute-phase reactions. We review evidence that a long-term cytokine-mediated acute-phase reaction occurs in Type II diabetes and is part of a wide-ranging innate immune response. Through the action of cytokines on the brain, liver, endothelium, adipose tissue and elsewhere, this process could be a major contributor to the biochemical and clinical features of metabolic syndrome X (glucose intolerance, dyslipidaemia, insulin resistance, hypertension, central obesity, accelerated atherosclerosis) but also provides a mechanism for many other abnormalities seen in Type II diabetes, including those in blood clotting, the reproductive system, metal ion metabolism, psychological behaviour and capillary permeability. In the short-term, the innate immune system restores homeostasis after environmental threats; we suggest that in Type II diabetes and impaired glucose tolerance long-term lifestyle and environmental stimulants, probably in those with an innately hypersensitive acute-phase response, produce disease instead of repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s001250051058 | DOI Listing |
BMC Infect Dis
January 2025
Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Each of the Coronavirus disease 2019 (COVID-19) vaccines has its characteristics that can affect their effectiveness in preventing hospitalization and patient mortality. The present study aimed to determine the effectiveness of COVID-19 vaccines, including whole-virus, protein-based, and vector-based on COVID-19 infection, hospitalization, and mortality.
Methods: The current cohort study was conducted using the data of all people who received at least two doses of each type of COVID-19 vaccine from March 2020 to August 2022 in Khorasan Rzavi province.
Biol Trace Elem Res
January 2025
Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, 68 Gehu Middle Road, Wujing District, Changzhou, 213000, Jiangsu, China.
Patients with diabetes have a high risk of failure of H. pylori eradication therapy. The present study aims to evaluate the efficacy and safety of vonoprazan-amoxicillin (VA) dual therapy for the treatment of H.
View Article and Find Full Text PDFSci Rep
January 2025
Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
The management of Type-2 Diabetes Mellitus (T2DM) remains challenging in cases of poor glycemic control despite triple Oral Hypoglycemic Agent (OHA) therapy. This prospective cohort study aimed to assess the effectiveness of Empagliflozin as part of a quadruple OHA regimen over a 7-year follow-up period in 575 adult patients with uncontrolled T2DM on a triple OHA regimen and who were unwilling to initiate insulin therapy. Overall, 92.
View Article and Find Full Text PDFNat Commun
January 2025
Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!