Flavonoids and other benzopyrone substances, having an appropriate hydroxylation profile, may inhibit the metalloenzymes leucine aminopeptidase (LAP), aminopeptidase M (AP-M), and carboxypeptidase A (CP-A). A structural feature that evidently favours the interaction between flavonoids and the three metalloenzymes is the 2,3-double bond conjugating the A and B rings and conferring a planar structure. This can be considered virtually indispensable for inhibition of the three metallopeptidases, though the hydroxylation profile required differed for each of the enzymes, and the interaction mechanism and behaviour also differed. The inhibitory effect of flavonoids on LAP was reversible, and to be effective the flavonoid had to have conjugated A and B rings and ortho-dihydroxylation on at least one of the aromatic rings. This same requirement was essential for inhibition by coumarins and was attributed to a catechol-like mechanism of interaction. The inhibitory effects on AP-M were due to inactivation of the enzyme, irreversibly altered by flavonoids with a 2,3-double bond and a minimum of one hydroxyl substituent on each of the aromatic rings. With CP-A, conjugation of the A and B rings enhanced the inhibitory effect of flavonoids, though it was not strictly required. The interaction between the polyphenolic substances tested and the two zinc aminopeptidases was not reversed by adding zinc to the reaction medium, indicating that the inhibition is not due to the coordination of the phenolic hydroxyl groups with the catalytical zinc of active site, though the presence of zinc affected the interaction behaviour differently according to each substance's hydroxylation profile.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756369809021480DOI Listing

Publication Analysis

Top Keywords

hydroxylation profile
12
23-double bond
8
inhibitory flavonoids
8
aromatic rings
8
flavonoids
6
interaction
5
rings
5
inhibition
4
inhibition zinc
4
zinc metallopeptidases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!