Involvement of the pleckstrin homology domain in the insulin-stimulated activation of protein kinase B.

J Biol Chem

INSERM U 145, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cédex 2, France.

Published: November 1998

Involvement of the pleckstrin homology (PH) domain in the insulin-stimulated activation of protein kinase B (PKB) was investigated in human embryonic kidney 293 cells. Different PKB constructs that contain mutations or deletions in the PH domain were transfected into cells, and the results on the basal and insulin-induced kinase activities were analyzed. Deletion of the entire PH domain (DeltaPH-PKB) did not impair the kinase activity; in contrast, the basal activity was elevated with respect to wild-type PKB. In addition, DeltaPH-PKB was responsive to insulin, and as for wild-type PKB, this was dependent on phosphoinositide 3-kinase. By contrast, a point mutation within the PH domain that impairs phospholipid binding (R25C) resulted in a construct that was not responsive to insulin. However, this defect was overcome by mutations that mimic the phosphorylation state of the active kinase. The increase in the basal activity of DeltaPH-PKB was shown to be due to an elevation in the level of phosphorylation of this construct. In addition, the subcellular localization of DeltaPH-PKB, as determined by both immunofluorescence and fractionation, was predominately cytosolic, and DeltaPH-PKB was present in the plasma membrane at much lower levels compared with wild-type PKB. These data show that phosphorylation is the major factor regulating the activity of PKB and that either removal of the PH domain or binding of phospholipids is required to permit this phosphorylation. In addition, membrane localization does not appear to be required for the activation process, but instead, binding of PKB to membrane phospholipids permits a conformational change in the molecule that allows for phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.45.29600DOI Listing

Publication Analysis

Top Keywords

wild-type pkb
12
involvement pleckstrin
8
pleckstrin homology
8
homology domain
8
domain insulin-stimulated
8
insulin-stimulated activation
8
activation protein
8
protein kinase
8
basal activity
8
responsive insulin
8

Similar Publications

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

A better understanding of nicotine neurobiology is needed to reduce or prevent chronic addiction, ameliorate the detrimental effects of nicotine withdrawal, and increase successful cessation of use. Nicotine binds and activates two astrocyte-expressed nicotinic acetylcholine receptors (nAChRs), α4β2 and α7. We recently found that ( or ) expression is restricted to astrocytes in mice and humans.

View Article and Find Full Text PDF

The EGF receptor is mutated in a number of cancers. In most cases, the mutations occur in the intracellular tyrosine kinase domain. However, in glioblastomas, many of the mutations are in the extracellular ligand binding domain.

View Article and Find Full Text PDF

The insulin-like growth factor (IGF)/insulin signaling (IIS) pathway is involved in cellular responses against intracellular divalent manganese ion (Mn) accumulation. As a pathway where multiple nodes utilize Mn as a metallic co-factor, how the IIS signaling patterns are affected by Mn overload is unresolved. In our prior studies, acute Mn exposure potentiated IIS kinase activity upon physiological-level stimulation, indicated by elevated phosphorylation of protein kinase B (PKB, also known as AKT).

View Article and Find Full Text PDF

Aortic Stress Activates an Adaptive Program in Thoracic Aortic Smooth Muscle Cells That Maintains Aortic Strength and Protects Against Aneurysm and Dissection in Mice.

Arterioscler Thromb Vasc Biol

February 2023

Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (C.Z., Y.L., A.C., Y.L., K.R.R., P.R., W.L., L.Z., J.S.C., S.A.L., Y.H.S.).

Background: When aortic cells are under stress, such as increased hemodynamic pressure, they adapt to the environment by modifying their functions, allowing the aorta to maintain its strength. To understand the regulation of this adaptive response, we examined transcriptomic and epigenomic programs in aortic smooth muscle cells (SMCs) during the adaptive response to AngII (angiotensin II) infusion and determined its importance in protecting against aortic aneurysm and dissection (AAD).

Methods: We performed single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) analyses in a mouse model of sporadic AAD induced by AngII infusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!