Increased levels of free fatty acids in fasted mice stimulate in vivo beta-cell electrical activity.

Diabetes

Instituto de Neurociencias, Campus de San Juan, San Juan de Alicante, Spain.

Published: November 1998

The electrical activity of pancreatic beta-cells in 48-h fasted mice has been recorded in vivo. Their electrical activity is exceedingly high at low levels of blood glucose when compared with control animals. For example, at a blood glucose concentration of 4.5 mmol/l, at which beta-cells are permanently hyperpolarized in control animals, fasted animals show continuous spiking activity. In fasted animals, hyperpolarization only occurs at glycemias below 2.2 mmol/l. As in fed animals, the electrical activity in fasted mice can be decreased or suppressed by the injection of diazoxide, indicating the participation of K(ATP) channels. The treatment of fasted animals with nicotinic acid, an inhibitor of lipolysis, produces a decrease in the levels of free fatty acids (FFAs) and a decrease in electrical activity, thereby restoring the dose-response curve for glucose in fasted animals to values close to those found in fed animals. Conversely, the injection of palmitic acid produces an increase in electrical activity without a change in blood glucose. These results point to FFAs as important regulators of electrical activity during fasting in vivo. They also indicate a dissociation of electrical activity and insulin release in fasted animals, since an increase in electrical activity is not associated with increased insulin secretion.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.47.11.1707DOI Listing

Publication Analysis

Top Keywords

electrical activity
36
fasted animals
20
fasted mice
12
blood glucose
12
activity
10
electrical
9
animals
9
levels free
8
free fatty
8
fatty acids
8

Similar Publications

Background: In The Gambia, existing research to understand and address malnutrition among adolescent girls is limited. Prior to the conduct of large-scale studies, formative research is needed. The aim of this mixed methods, cross-sectional study was to explore cultural contexts relevant to nutritional status, feasibility and appropriateness of recruitment and data collection methods (questionnaires and anthropometric measures), and plausibility of data collected.

View Article and Find Full Text PDF

In the eastern segment of the Central Asian Orogenic Belt (CAOB), there is widespread volcanic magma activity. However, there is still considerable controversy over the formation mechanisms and material sources of these volcanoes. The mantle transition zone (MTZ), as a necessary channel for the upward and downward movement of mantle material and energy exchange may provide crucial constraints on the dynamic mechanisms of volcanic activity.

View Article and Find Full Text PDF

Hippocampal dendritic spines store-operated calcium entry and endoplasmic reticulum content is dynamic microtubule dependent.

Sci Rep

January 2025

Laboratory of Biomedical Imaging and Data Analysis, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, St. Petersburg, Russia, 194021.

One of the mechanisms of calcium signalling in neurons is store-operated calcium entry (SOCE), which is activated when the calcium concentration in the smooth endoplasmic reticulum (ER) decreases and its protein-calcium sensor STIM (stromal interacting molecule) relocate to the endoplasmic reticulum and plasma membrane junctions, forms clusters and induces calcium entry. In electrically non-excitable cells, STIM1 is coupled with the positive end of a tubulin microtubule through interaction with EB1 (end-binding) protein, which controls its oligomerization, SOCE and participates in ER movement. STIM2 homologue, which is specific for mature hippocampal dendritic spines, is known to interact with EB3 protein, however, not much is known about the role of this interaction in STIM2 clustering or ER trafficking in neurons.

View Article and Find Full Text PDF

The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!